"""This module defines classes which can read image data from WSI formats."""
from __future__ import annotations
import json
import logging
import math
import os
import re
from datetime import datetime
from numbers import Number
from pathlib import Path
from typing import TYPE_CHECKING
import fsspec
import numpy as np
import openslide
import pandas as pd
import tifffile
import zarr
from defusedxml import ElementTree
from imagecodecs.numcodecs import Delta, Jpeg, Jpeg2k, Lzw
from numcodecs import register_codec
from packaging.version import Version
from PIL import Image
from tifffile import TiffPages
from tiatoolbox import logger, utils
from tiatoolbox.annotation import AnnotationStore, SQLiteStore
from tiatoolbox.utils.env_detection import pixman_warning
from tiatoolbox.utils.exceptions import FileNotSupportedError
from tiatoolbox.utils.magic import is_sqlite3
from tiatoolbox.utils.visualization import AnnotationRenderer
from tiatoolbox.wsicore.wsimeta import WSIMeta
if TYPE_CHECKING: # pragma: no cover
from collections.abc import Iterable
import glymur
from tiatoolbox.type_hints import (
Bounds,
IntBounds,
IntPair,
NumPair,
Resolution,
Units,
)
from tiatoolbox.wsicore.metadata.ngff import Multiscales
pixman_warning()
MIN_NGFF_VERSION = Version("0.4")
MAX_NGFF_VERSION = Version("0.4")
[docs]
def is_dicom(path: Path) -> bool:
"""Check if the input is a DICOM file.
Args:
path (Path): Path to the file to check.
Returns:
bool: True if the file is a DICOM file.
"""
path = Path(path)
is_dcm = path.suffix.lower() == ".dcm"
is_dcm_dir = path.is_dir() and any(
p.suffix.lower() == ".dcm" for p in path.iterdir()
)
return is_dcm or is_dcm_dir
[docs]
def is_tiled_tiff(path: Path) -> bool:
"""Check if the input is a tiled TIFF file.
Args:
path (Path):
Path to the file to check.
Returns:
bool:
True if the file is a tiled TIFF file.
"""
path = Path(path)
try:
tif = tifffile.TiffFile(path)
except tifffile.TiffFileError:
return False
return tif.pages[0].is_tiled
[docs]
def is_zarr(path: Path) -> bool:
"""Check if the input is a Zarr file.
Args:
path (Path):
Path to the file to check.
Returns:
bool:
True if the file is a Zarr file.
"""
path = Path(path)
try:
_ = zarr.open(str(path), mode="r")
except Exception: # skipcq: PYL-W0703 # noqa: BLE001
return False
return True
[docs]
def is_ngff( # noqa: PLR0911
path: Path,
min_version: Version = MIN_NGFF_VERSION,
max_version: Version = MAX_NGFF_VERSION,
) -> bool:
"""Check if the input is an NGFF file.
This should return True for a zarr groups stored in a directory, zip
file, or SQLite database.
Args:
path (Path):
Path to the file to check.
min_version (Tuple[int, ...]):
Minimum version of the NGFF file to be considered valid.
max_version (Tuple[int, ...]):
Maximum version of the NGFF file to be considered valid.
Returns:
bool:
True if the file is an NGFF file.
"""
path = Path(path)
store = zarr.SQLiteStore(str(path)) if path.is_file() and is_sqlite3(path) else path
try:
zarr_group = zarr.open(store, mode="r")
except (zarr.errors.FSPathExistNotDir, zarr.errors.PathNotFoundError):
return False
if not isinstance(zarr_group, zarr.hierarchy.Group):
return False
group_attrs = zarr_group.attrs.asdict()
try:
multiscales: Multiscales = group_attrs["multiscales"]
omero = group_attrs["omero"]
_ARRAY_DIMENSIONS = group_attrs["_ARRAY_DIMENSIONS"] # noqa: N806
if not all(
[
isinstance(multiscales, list),
isinstance(_ARRAY_DIMENSIONS, list),
isinstance(omero, dict),
all(isinstance(m, dict) for m in multiscales),
],
):
logger.warning(
"The NGFF file is not valid. "
"The multiscales, _ARRAY_DIMENSIONS and omero attributes "
"must be present and of the correct type.",
)
return False
except KeyError:
return False
multiscales_versions = {
Version(scale["version"]) for scale in multiscales if "version" in scale
}
omero_version: str | None = omero.get("version")
if omero_version:
omero_version: Version = Version(omero_version)
if omero_version < min_version:
logger.warning(
"The minimum supported version of the NGFF file is %s. "
"But the versions of the multiscales in the file are %s.",
min_version,
multiscales_versions,
)
return False
if omero_version > max_version:
logger.warning(
"The maximum supported version of the NGFF file is %s. "
"But the versions of the multiscales in the file are %s.",
max_version,
multiscales_versions,
)
return True
if len(multiscales_versions) > 1:
logger.warning(
"Found multiple versions for NGFF multiscales: %s",
multiscales_versions,
)
if any(version < min_version for version in multiscales_versions):
logger.warning(
"The minimum supported version of the NGFF file is %s. "
"But the versions of the multiscales in the file are %s.",
min_version,
multiscales_versions,
)
return False
if any(version > max_version for version in multiscales_versions):
logger.warning(
"The maximum supported version of the NGFF file is %s. "
"But the versions of the multiscales in the file are %s.",
max_version,
multiscales_versions,
)
return True
return is_zarr(path)
def _handle_virtual_wsi(
last_suffix: str,
input_path: Path,
mpp: tuple[Number, Number] | None,
power: Number | None,
) -> VirtualWSIReader | None:
"""Handle virtual WSI cases.
Args:
last_suffix (str):
Suffix of the file to read.
input_path (Path):
Input path to virtual WSI.
mpp (:obj:`tuple` or :obj:`list` or :obj:`None`, optional):
The MPP of the WSI. If not provided, the MPP is approximated
from the objective power.
power (:obj:`float` or :obj:`None`, optional):
The objective power of the WSI. If not provided, the power
is approximated from the MPP.
Returns:
VirtualWSIReader | None:
:class:`VirtualWSIReader` if input_path is valid path to virtual WSI
otherwise None.
"""
# Handle homogeneous cases (based on final suffix)
def np_virtual_wsi(
input_path: np.ndarray,
*args: Number | tuple | str | WSIMeta | None,
**kwargs: dict,
) -> VirtualWSIReader:
"""Create a virtual WSI from a numpy array."""
return VirtualWSIReader(input_path, *args, **kwargs)
suffix_to_reader = {
".npy": np_virtual_wsi,
".jp2": JP2WSIReader,
".jpeg": VirtualWSIReader,
".jpg": VirtualWSIReader,
".png": VirtualWSIReader,
".tif": VirtualWSIReader,
".tiff": VirtualWSIReader,
}
if last_suffix in suffix_to_reader:
return suffix_to_reader[last_suffix](input_path, mpp=mpp, power=power)
return None
def _handle_tiff_wsi(
input_path: Path, mpp: tuple[Number, Number] | None, power: Number | None
) -> TIFFWSIReader | OpenSlideWSIReader | None:
"""Handle TIFF WSI cases.
Args:
input_path (Path):
Input path to virtual WSI.
mpp (:obj:`tuple` or :obj:`list` or :obj:`None`, optional):
The MPP of the WSI. If not provided, the MPP is approximated
from the objective power.
power (:obj:`float` or :obj:`None`, optional):
The objective power of the WSI. If not provided, the power
is approximated from the MPP.
Returns:
OpenSlideWSIReader | TIFFWSIReader | None:
:class:`OpenSlideWSIReader` or :class:`TIFFWSIReader` if input_path is
valid path to tiff WSI otherwise None.
"""
if openslide.OpenSlide.detect_format(input_path) is not None:
try:
return OpenSlideWSIReader(input_path, mpp=mpp, power=power)
except openslide.OpenSlideError:
pass
if is_tiled_tiff(input_path):
return TIFFWSIReader(input_path, mpp=mpp, power=power)
return None
[docs]
class WSIReader:
"""Base whole slide image (WSI) reader class.
This class defines functions for reading pixel data and metadata
from whole slide image (WSI) files.
Attributes:
input_path (Path):
Input path to WSI file.
Args:
input_img (str, :obj:`Path`, :obj:`ndarray` or :obj:`.WSIReader`):
Input path to WSI.
mpp (:obj:`tuple` or :obj:`list` or :obj:`None`, optional):
The MPP of the WSI. If not provided, the MPP is approximated
from the objective power.
power (:obj:`float` or :obj:`None`, optional):
The objective power of the WSI. If not provided, the power
is approximated from the MPP.
"""
[docs]
@staticmethod
def open( # noqa: PLR0911
input_img: str | Path | np.ndarray | WSIReader,
mpp: tuple[Number, Number] | None = None,
power: Number | None = None,
**kwargs: dict,
) -> WSIReader:
"""Return an appropriate :class:`.WSIReader` object.
Args:
input_img (str, Path, :obj:`numpy.ndarray` or :obj:`.WSIReader`):
Input to create a WSI object from. Supported types of
input are: `str` and :obj:`Path` which point to the
location on the disk where image is stored,
:class:`numpy.ndarray` in which the input image in the
form of numpy array (HxWxC) is stored, or :obj:`.WSIReader`
which is an already created tiatoolbox WSI handler. In
the latter case, the function directly passes the
input_imge to the output.
mpp (tuple):
(x, y) tuple of the MPP in the units of the input image.
power (float):
Objective power of the input image.
kwargs (dict):
Key-word arguments.
Returns:
WSIReader:
An object with base :class:`.WSIReader` as base class.
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> wsi = WSIReader.open(input_img="./sample.svs")
"""
# Validate inputs
if not isinstance(input_img, (WSIReader, np.ndarray, str, Path)):
msg = "Invalid input: Must be a WSIRead, numpy array, string or Path"
raise TypeError(
msg,
)
if isinstance(input_img, np.ndarray):
return VirtualWSIReader(input_img, mpp=mpp, power=power)
if isinstance(input_img, WSIReader):
return input_img
# Input is a string or Path, normalise to Path
input_path = Path(input_img)
WSIReader.verify_supported_wsi(input_path)
# Handle special cases first (DICOM, Zarr/NGFF, OME-TIFF)
if is_dicom(input_path):
return DICOMWSIReader(input_path, mpp=mpp, power=power)
_, _, suffixes = utils.misc.split_path_name_ext(input_path)
last_suffix = suffixes[-1]
if FsspecJsonWSIReader.is_valid_zarr_fsspec(input_img):
return FsspecJsonWSIReader(input_img, mpp=mpp, power=power)
if last_suffix == ".db":
return AnnotationStoreReader(input_path, **kwargs)
if last_suffix in (".zarr",):
if not is_ngff(input_path):
msg = f"File {input_path} does not appear to be a v0.4 NGFF zarr."
raise FileNotSupportedError(
msg,
)
return NGFFWSIReader(input_path, mpp=mpp, power=power)
if suffixes[-2:] in ([".ome", ".tiff"],) or suffixes[-2:] in (
[".ome", ".tif"],
):
return TIFFWSIReader(input_path, mpp=mpp, power=power)
if last_suffix in (".tif", ".tiff"):
tiff_wsi = _handle_tiff_wsi(input_path, mpp=mpp, power=power)
if tiff_wsi is not None:
return tiff_wsi
virtual_wsi = _handle_virtual_wsi(
last_suffix=last_suffix, input_path=input_path, mpp=mpp, power=power
)
if virtual_wsi is not None:
return virtual_wsi
# Try openslide last
return OpenSlideWSIReader(input_path, mpp=mpp, power=power)
[docs]
@staticmethod
def verify_supported_wsi(input_path: Path) -> None:
"""Verify that an input image is supported.
Args:
input_path (:class:`Path`):
Input path to WSI.
Raises:
FileNotSupportedError:
If the input image is not supported.
"""
if is_ngff(input_path) or is_dicom(input_path):
return
_, _, suffixes = utils.misc.split_path_name_ext(input_path)
if suffixes and suffixes[-1] not in [
".svs",
".npy",
".ndpi",
".mrxs",
".tif",
".tiff",
".jp2",
".png",
".jpg",
".jpeg",
".zarr",
".db",
".json",
]:
msg = f"File {input_path} is not a supported file format."
raise FileNotSupportedError(
msg,
)
def __init__(
self: WSIReader,
input_img: str | Path | np.ndarray | AnnotationStore,
mpp: tuple[Number, Number] | None = None,
power: Number | None = None,
) -> None:
"""Initialize :class:`WSIReader`."""
if isinstance(input_img, (np.ndarray, AnnotationStore)):
self.input_path = None
else:
self.input_path = Path(input_img)
if not self.input_path.exists():
msg = f"Input path does not exist: {self.input_path}"
raise FileNotFoundError(msg)
self._m_info = None
# Set a manual mpp value
if mpp and isinstance(mpp, Number):
mpp = (mpp, mpp)
if mpp and (not hasattr(mpp, "__len__") or len(mpp) != 2): # noqa: PLR2004
msg = "`mpp` must be a number or iterable of length 2."
raise TypeError(msg)
self._manual_mpp = tuple(mpp) if mpp else None
# Set a manual power value
if power and not isinstance(power, Number):
msg = "`power` must be a number."
raise TypeError(msg)
self._manual_power = power
@property
def info(self: WSIReader) -> WSIMeta:
"""WSI metadata property.
This property is cached and only generated on the first call.
Returns:
WSIMeta:
An object containing normalized slide metadata.
"""
if self._m_info is not None:
return self._m_info
self._m_info = self._info()
if self._manual_mpp:
self._m_info.mpp = np.array(self._manual_mpp)
if self._manual_power:
self._m_info.objective_power = self._manual_power
return self._m_info
@info.setter
def info(self: WSIReader, meta: WSIMeta) -> None:
"""WSI metadata setter.
Args:
meta (WSIMeta): Metadata object.
"""
self._m_info = meta
def _info(self: WSIReader) -> WSIMeta:
"""WSI metadata internal getter used to update info property.
Missing values for MPP and objective power are approximated and
a warning raised. Objective power is calculated as the mean of
the :func:utils.transforms.mpp2common_objective_power in x and
y. MPP (x and y) is approximated using objective power via
:func:utils.transforms.objective_power2mpp.
Returns:
WSIMeta:
An object containing normalized slide metadata.
"""
raise NotImplementedError
def _find_optimal_level_and_downsample(
self: WSIReader,
resolution: Resolution,
units: Units,
precision: int = 3,
) -> tuple[int, np.ndarray]:
"""Find the optimal level to read at for a desired resolution and units.
The optimal level is the most downscaled level of the image
pyramid (or multi-resolution layer) which is larger than the
desired target resolution. The returned scale is the downsample
factor required, post read, to achieve the desired resolution.
Args:
resolution (Resolution):
Resolution to find optimal read parameters for
units (Units):
Units of the scale.
precision (int or optional):
Decimal places to use when finding optimal scale. This
can be adjusted to avoid errors when an unnecessary
precision is used. E.g. 1.1e-10 > 1 is insignificant in
most cases. Defaults to 3.
Returns:
tuple:
Optimal read level and scale factor between the optimal
level and the target scale (usually <= 1):
- :py:obj:`int` - Optimal read level.
- :class:`numpy.ndarray` - Scale factor in X and Y.
"""
level_scales = self.info.relative_level_scales(resolution, units)
level_resolution_sufficient = [
all(np.round(x, decimals=precision) <= 1) for x in level_scales
]
# Check if level 0 is lower resolution than required (scale > 1)
if not any(level_resolution_sufficient):
level = 0
else:
# Find the first level with relative scale >= 1.
# Note: np.argmax finds the index of the first True element.
# Here it is used on a reversed list to find the first
# element <=1, which is the same element as the last <=1
# element when counting forward in the regular list.
reverse_index = np.argmax(level_resolution_sufficient[::-1])
# Convert the index from the reversed list to the regular index (level)
level = (len(level_scales) - 1) - reverse_index
scale = level_scales[level]
# Check for requested resolution > than baseline resolution
if any(np.array(scale) > 1):
logger.warning(
"Read: Scale > 1."
"This means that the desired resolution is higher"
" than the WSI baseline (maximum encoded resolution)."
" Interpolation of read regions may occur.",
)
return level, scale
[docs]
def find_read_rect_params(
self: WSIReader,
location: IntPair,
size: IntPair,
resolution: Resolution,
units: Units,
precision: int = 3,
) -> tuple[int, IntPair, IntPair, NumPair, IntPair]:
"""Find optimal parameters for reading a rect at a given resolution.
Reading the image at full baseline resolution and re-sampling to
the desired resolution would require a large amount of memory
and be very slow. This function checks the other resolutions
stored in the WSI's pyramid of resolutions to find the lowest
resolution (the smallest level) which is higher resolution (a larger
level) than the requested output resolution.
In addition to finding this 'optimal level', the scale factor to
apply after reading in order to obtain the desired resolution is
found along with conversions of the location and size into level
and baseline coordinates.
Args:
location (IntPair):
Location in terms of the baseline image (level 0)
resolution.
size (IntPair):
Desired output size in pixels (width, height) tuple.
resolution (Resolution):
Desired output resolution.
units (Units):
Units of scale, default = "level". Supported units are:
- microns per pixel ('mpp')
- objective power ('power')
- pyramid / resolution level ('level')
- pixels per baseline pixel ("baseline")
precision (int, optional):
Decimal places to use when finding optimal scale. See
:func:`find_optimal_level_and_downsample` for more.
Returns:
tuple:
Parameters for reading the requested region.
- :py:obj:`int` - Optimal read level.
- :py:obj:`tuple` - Read location in level coordinates.
- :py:obj:`int` - X location.
- :py:obj:`int` - Y location.
- :py:obj:`tuple` - Region size in level coordinates.
- :py:obj:`int` - Width.
- :py:obj:`int` - Height.
- :py:obj:`tuple` - Scaling to apply after level read.
- :py:obj:`float` - X scale factor.
- :py:obj:`float` - Y scale factor.
- :py:obj:`tuple` - Region size in baseline coordinates.
- :py:obj:`int` - Width.
- :py:obj:`int` - Height.
"""
read_level, post_read_scale_factor = self._find_optimal_level_and_downsample(
resolution,
units,
precision,
)
info = self.info
level_downsample = info.level_downsamples[read_level]
baseline_read_size = np.round(
np.array(size) * level_downsample / post_read_scale_factor,
).astype(int)
level_read_size = np.round(np.array(size) / post_read_scale_factor).astype(int)
level_location = np.round(np.array(location) / level_downsample).astype(int)
return (
read_level,
level_location,
level_read_size,
post_read_scale_factor,
baseline_read_size,
)
def _find_read_params_at_resolution(
self: WSIReader,
location: IntPair,
size: IntPair,
resolution: Resolution,
units: Units,
) -> tuple[int, NumPair, IntPair, IntPair, IntPair, IntPair]:
"""Works similarly to `_find_read_rect_params`.
Return the information necessary for scaling. While
`_find_read_rect_params` assumes location to be at baseline.
This function assumes location to be at requested resolution.
Args:
location (IntPair):
Location in the requested resolution system.
size (IntPair):
Desired output size in pixels (width, height) tuple and
in the requested resolution system.
resolution (Resolution):
Desired output resolution.
units (Units):
Units of scale, default = "level". Supported units are:
- microns per pixel ('mpp') - objective power ('power')
- pyramid / resolution level ('level') - pixels per
baseline pixel ("baseline")
Returns:
tuple:
Parameters for reading the requested region:
- :py:obj:`int` - Optimal read level.
- :py:obj:`tuple` - Scaling to apply after level read to
achieve desired output resolution.
- :py:obj:`float` - X scale factor.
- :py:obj:`float` - Y scale factor.
- :py:obj:`tuple` - Region size in read level
coordinates.
- :py:obj:`int` - Width.
- :py:obj:`int` - Height.
- :py:obj:`tuple` - Region location in read level
coordinates.
- :py:obj:`int` - X location.
- :py:obj:`int` - Y location.
- :py:obj:`tuple` - Region size in level 0 coordinates.
- :py:obj:`int` - Width.
- :py:obj:`int` - Height.
- :py:obj:`tuple` - Region location level 0 coordinates.
- :py:obj:`int` - X location.
- :py:obj:`int` - Y location.
"""
(
read_level,
# read_level to requested resolution (full)
read_level_to_resolution_scale_factor,
) = self._find_optimal_level_and_downsample(
resolution,
units,
)
info = self.info
# Do we need sanity check for input form ?
requested_location = np.array(location)
requested_size = np.array(size)
baseline_to_read_level_scale_factor = 1 / info.level_downsamples[read_level]
baseline_to_resolution_scale_factor = (
baseline_to_read_level_scale_factor * read_level_to_resolution_scale_factor
)
size_at_baseline = requested_size / baseline_to_resolution_scale_factor
location_at_baseline = (
requested_location.astype(np.float32) / baseline_to_resolution_scale_factor
)
size_at_read_level = requested_size / read_level_to_resolution_scale_factor
location_at_read_level = (
requested_location.astype(np.float32)
/ read_level_to_resolution_scale_factor
)
output = (
size_at_read_level,
location_at_read_level,
size_at_baseline,
location_at_baseline,
)
output = tuple(np.ceil(v).astype(np.int64) for v in output)
return (read_level, read_level_to_resolution_scale_factor, *output)
[docs]
def bounds_at_resolution_to_baseline(
self: WSIReader,
bounds: Bounds,
resolution: Resolution,
units: Units,
) -> Bounds:
"""Find corresponding bounds in baseline.
Find corresponding bounds in baseline given the input is at
requested resolution.
"""
bounds_at_resolution = np.array(bounds)
tl_at_resolution = bounds_at_resolution[:2] # is in XY
br_at_resolution = bounds_at_resolution[2:]
size_at_resolution = br_at_resolution - tl_at_resolution
# Find parameters for optimal read
(
_, # read_level,
_, # read_level_to_requested_scale_factor,
_, # size_at_read_level,
_, # location_at_read_level,
size_at_baseline,
location_at_baseline,
) = self._find_read_params_at_resolution(
tl_at_resolution,
size_at_resolution,
resolution,
units,
)
tl_at_baseline = location_at_baseline
br_at_baseline = tl_at_baseline + size_at_baseline
return np.concatenate([tl_at_baseline, br_at_baseline]) # bounds at baseline
[docs]
def slide_dimensions(
self: WSIReader,
resolution: Resolution,
units: Units,
precision: int = 3,
) -> IntPair:
"""Return the size of WSI at requested resolution.
Args:
resolution (Resolution):
Resolution to read thumbnail at, default = 1.25
(objective power).
units (Units):
resolution units, default="power".
precision (int, optional):
Decimal places to use when finding optimal scale. See
:func:`find_optimal_level_and_downsample` for more.
Returns:
:py:obj:`tuple`:
Size of the WSI in (width, height).
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> slide_shape = wsi.slide_dimensions(0.55, 'mpp')
"""
wsi_shape_at_baseline = self.info.slide_dimensions
# Find parameters for optimal read
(
_,
_,
wsi_shape_at_resolution,
_,
) = self.find_read_bounds_params(
[0, 0, *list(wsi_shape_at_baseline)],
resolution,
units,
precision,
)
return wsi_shape_at_resolution
[docs]
def find_read_bounds_params(
self: WSIReader,
bounds: Bounds,
resolution: Resolution,
units: Units,
precision: int = 3,
) -> tuple[int, IntBounds, IntPair, IntPair, np.ndarray]:
"""Find optimal parameters for reading bounds at a given resolution.
Args:
bounds (IntBounds):
Tuple of (start_x, start_y, end_x, end_y) i.e. (left,
top, right, bottom) of the region in baseline reference
frame.
resolution (Resolution):
desired output resolution
units (Units):
units of scale, default = "level". Supported units are:
microns per pixel (mpp), objective power (power),
pyramid / resolution level (level), pixels per baseline
pixel (baseline).
precision (int, optional):
Decimal places to use when finding optimal scale. See
:func:`find_optimal_level_and_downsample` for more.
Returns:
tuple:
Parameters for reading the requested bounds area:
- :py:obj:`int` - Optimal read level
- :py:obj:`tuple` - Bounds of the region in level coordinates
- :py:obj:`int` - Left (start x value)
- :py:obj:`int` - Top (start y value)
- :py:obj:`int` - Right (end x value)
- :py:obj:`int` - Bottom (end y value)
- :py:obj:`tuple` - Expected size of the output image
- :py:obj:`int` - Width
- :py:obj:`int` - Height
- np.ndarray - Scale factor of re-sampling to apply after reading.
"""
start_x, start_y, end_x, end_y = bounds
read_level, post_read_scale_factor = self._find_optimal_level_and_downsample(
resolution,
units,
precision,
)
info = self.info
level_downsample = info.level_downsamples[read_level]
location = np.array([start_x, start_y])
size = np.array([end_x - start_x, end_y - start_y])
level_size = np.round(np.array(size) / level_downsample).astype(int)
level_location = np.round(location / level_downsample).astype(int)
level_bounds = (*level_location, *(level_location + level_size))
output_size = np.round(level_size * post_read_scale_factor).astype(int)
return (read_level, level_bounds, output_size, post_read_scale_factor)
@staticmethod
def _check_unit_conversion_integrity(
input_unit: str,
output_unit: str,
baseline_mpp: Resolution,
baseline_power: Resolution,
) -> None:
"""Checks integrity of units before unit conversion.
Args:
input_unit (str):
input units
output_unit (str):
output units
baseline_mpp:
baseline microns per pixel (mpp)
baseline_power:
baseline magnification level.
Raises:
ValueError:
If the checks on unit conversion fails.
"""
if input_unit not in {"mpp", "power", "level", "baseline"}:
msg = (
"Invalid input_unit: argument accepts only one of the "
"following options: `'mpp'`, `'power'`, `'level'`, `'baseline'`."
)
raise ValueError(
msg,
)
if output_unit not in {"mpp", "power", "baseline", None}:
msg = (
"Invalid output_unit: argument accepts only one of the "
"following options: `'mpp'`, `'power'`, `'baseline'`, "
"or None (to return all units)."
)
raise ValueError(
msg,
)
if baseline_mpp is None and input_unit == "mpp":
msg = (
"Missing 'mpp': `input_unit` has been set to 'mpp' while "
"there is no information about 'mpp' in WSI meta data."
)
raise ValueError(
msg,
)
if baseline_power is None and input_unit == "power":
msg = (
"Missing 'objective_power': `input_unit` has been set to 'power' "
"while there is no information about 'objective_power' "
"in WSI meta data."
)
raise ValueError(
msg,
)
def _prepare_output_dict(
self: WSIReader,
input_unit: Units,
input_res: Resolution,
baseline_mpp: Resolution,
baseline_power: Resolution,
) -> dict:
"""Calculate output_res as dictionary based on input_unit and resolution."""
output_dict = {
"mpp": None,
"power": None,
"baseline": None,
}
if input_unit == "mpp":
if isinstance(input_res, (list, tuple, np.ndarray)):
output_dict["mpp"] = np.array(input_res)
else:
output_dict["mpp"] = np.array([input_res, input_res])
output_dict["baseline"] = baseline_mpp[0] / output_dict["mpp"][0]
if baseline_power is not None:
output_dict["power"] = output_dict["baseline"] * baseline_power
return output_dict
if input_unit == "power":
output_dict["baseline"] = input_res / baseline_power
output_dict["power"] = input_res
elif input_unit == "level":
level_scales = self.info.relative_level_scales(input_res, input_unit)
output_dict["baseline"] = level_scales[0]
if baseline_power is not None:
output_dict["power"] = output_dict["baseline"] * baseline_power
else: # input_unit == 'baseline'
output_dict["baseline"] = input_res
if baseline_power is not None:
output_dict["power"] = baseline_power * output_dict["baseline"]
if baseline_mpp is not None:
output_dict["mpp"] = baseline_mpp / output_dict["baseline"]
return output_dict
[docs]
def convert_resolution_units(
self: WSIReader,
input_res: Resolution,
input_unit: Units,
output_unit: Units | None = None,
) -> Resolution:
"""Converts resolution value between different units.
This function accepts a resolution and its units in the input
and converts it to all other units ('mpp', 'power', 'baseline').
To achieve resolution in 'mpp' and 'power' units in the output,
WSI metadata should contain `mpp` and `objective_power`
information, respectively.
Args:
input_res (Resolution):
the resolution which we want to convert to the other
units.
input_unit (Units):
The unit of the input resolution (`input_res`).
Acceptable input_units are 'mpp', 'power', 'baseline',
and 'level'. output_unit (str): the desired unit to
which we want to convert the `input_res`. Acceptable
values for `output_unit` are: 'mpp', 'power', and
'baseline'. If `output_unit` is not provided, all the
conversions to all the mentioned units will be
returned in a dictionary.
output_unit (Units):
Units of scale, Supported units are:
- microns per pixel ('mpp')
- objective power ('power')
- pyramid / resolution level ('level')
- pixels per baseline pixel ("baseline")
Returns:
output_res (Resolution):
Either a float which is the converted `input_res` to the
desired `output_unit` or a dictionary containing the
converted `input_res` to all acceptable units (`'mpp'`,
`'power'`, `'baseline'`). If there is not enough metadata
to calculate a unit (like `mpp` or `power`), they
will be set to None in the dictionary.
"""
baseline_mpp = self.info.mpp
baseline_power = self.info.objective_power
self._check_unit_conversion_integrity(
input_unit,
output_unit,
baseline_mpp,
baseline_power,
)
output_dict = self._prepare_output_dict(
input_unit,
input_res,
baseline_mpp,
baseline_power,
)
out_res = output_dict[output_unit] if output_unit is not None else output_dict
if out_res is None:
logger.warning(
"Although unit conversion from input_unit has been done, the requested "
"output_unit is returned as None. Probably due to missing 'mpp' or "
"'objective_power' in slide's meta data.",
)
return out_res
def _find_tile_params(
self: WSIReader,
tile_objective_value: Number,
) -> tuple[int, IntPair, int, Number]:
"""Find the params for save tiles."""
rescale = self.info.objective_power / tile_objective_value
if not rescale.is_integer():
msg = (
"Tile objective value must be an integer multiple of the "
"objective power of the slide.",
)
raise ValueError(
msg,
)
scale_levels_available = [
np.log2(np.round(x, 3)) for x in self.info.level_downsamples
]
try:
level_scale = np.log2(rescale)
if not level_scale.is_integer():
raise ValueError # noqa: TRY301
level_scale = np.int_(level_scale)
if level_scale not in scale_levels_available:
raise IndexError # noqa: TRY301
level = scale_levels_available.index(level_scale)
slide_dimension = self.info.level_dimensions[level]
rescale = 1
# Raise index error if desired pyramid level not embedded
# in level_dimensions
except IndexError:
level = 0
slide_dimension = self.info.level_dimensions[level]
rescale = np.int_(rescale)
logger.warning(
"Reading WSI at level 0. Desired tile_objective_value %s "
"not available.",
str(tile_objective_value),
)
except ValueError:
level = 0
slide_dimension = self.info.level_dimensions[level]
rescale = 1
logger.warning(
"Reading WSI at level 0. Reading at tile_objective_value %s "
"not allowed.",
str(tile_objective_value),
)
tile_objective_value = self.info.objective_power
return level, slide_dimension, rescale, tile_objective_value
[docs]
def read_rect_at_resolution(
self: WSIReader,
location: NumPair,
size: NumPair,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: Number | Iterable[NumPair] = 0,
**kwargs: dict,
) -> np.ndarray:
"""Helper to perform `read_rect` at resolution.
In actuality, `read_rect` at resolution is synonymous with
calling `read_bound` at resolution because `size` has always
been within the resolution system.
"""
tl = np.array(location)
br = location + np.array(size)
bounds = np.concatenate([tl, br])
return self.read_bounds(
bounds,
resolution=resolution,
units=units,
interpolation=interpolation,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
coord_space="resolution",
**kwargs,
)
[docs]
def read_rect(
self: WSIReader,
location: IntPair,
size: IntPair,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | tuple[int, int] = 0,
coord_space: str = "baseline",
**kwargs: dict,
) -> np.ndarray:
"""Read a region of the whole slide image at a location and size.
Location is in terms of the baseline image (level 0 / maximum
resolution), and size is the output image size.
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The field of view varies with resolution. For a fixed field of
view see :func:`read_bounds`.
Args:
location (IntPair):
(x, y) tuple giving the top left pixel in the baseline
(level 0) reference frame.
size (IntPair):
(width, height) tuple giving the desired output image
size.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
The units of resolution, default = "level". Supported
units are: microns per pixel (mpp), objective power
(power), pyramid / resolution level (level), pixels per
baseline pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by VirtualWSIReader. See class
docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=size[0], N=size[1]
Example:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load a WSI image
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # Read a region at level 0 (baseline / full resolution)
>>> img = wsi.read_rect(location, size)
>>> # Read a region at 0.5 microns per pixel (mpp)
>>> img = wsi.read_rect(location, size, 0.5, "mpp")
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.5),
... units="mpp",
... )
Note: The field of view varies with resolution when using
:func:`read_rect`.
.. figure:: ../images/read_rect_tissue.png
:width: 512
:alt: Diagram illustrating read_rect
As the location is in the baseline reference frame but the size
(width and height) is the output image size, the field of view
therefore changes as resolution changes.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
.. figure:: ../images/read_rect-interpolated-reads.png
:width: 512
:alt: Diagram illustrating read_rect interpolting between levels
When reading between the levels stored in the WSI, the
coordinates of the requested region are projected to the next
highest resolution. This resolution is then decoded and
downsampled to produce the desired output. This is a major
source of variability in the time take to perform a read
operation. Reads which require reading a large region before
downsampling will be significantly slower than reading at a
fixed level.
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load a WSI image
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # The resolution can be different in x and y, e.g.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.75),
... units="mpp",
... )
>>> # Several units can be used including: objective power,
>>> # microns per pixel, pyramid/resolution level, and
>>> # fraction of baseline.
>>> # E.g. Read a region at an objective power of 10x
>>> img = wsi.read_rect(
... location,
... size,
... resolution=10,
... units="power",
... )
>>> # Read a region at pyramid / resolution level 1
>>> img = wsi.read_rect(
... location,
... size,
... resolution=1,
... units="level",
... )
>>> # Read at a fractional level, this will linearly
>>> # interpolate the downsampling factor between levels.
>>> # E.g. if levels 0 and 1 have a downsampling of 1x and
>>> # 2x of baseline, then level 0.5 will correspond to a
>>> # downsampling factor 1.5x of baseline.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="level",
... )
>>> # Read a region at half of the full / baseline
>>> # resolution.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="baseline",
... )
>>> # Read at a higher resolution than the baseline
>>> # (interpolation applied to output)
>>> img = wsi.read_rect(
... location,
... size,
... resolution=1.25,
... units="baseline",
... )
>>> # Assuming the image has a native mpp of 0.5,
>>> # interpolation will be applied here.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.25,
... units="mpp",
... )
"""
raise NotImplementedError
[docs]
def read_bounds(
self: WSIReader,
bounds: Bounds,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: Number | Iterable[NumPair] = 0,
coord_space: str = "baseline",
**kwargs: dict,
) -> np.ndarray:
"""Read a region of the whole slide image within given bounds.
Bounds are in terms of the baseline image (level 0 / maximum
resolution).
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The output image size may be different to the width and height
of the bounds as the resolution will affect this. To read a
region with a fixed output image size see :func:`read_rect`.
Args:
bounds (IntBounds):
By default, this is a tuple of (start_x, start_y, end_x,
end_y) i.e. (left, top, right, bottom) of the region in
baseline reference frame. However, with
`coord_space="resolution"`, the bound is expected to be
at the requested resolution system.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
Units of resolution, default="level". Supported units
are: microns per pixel (mpp), objective power (power),
pyramid / resolution level (level), pixels per baseline
pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by :obj:`VirtualWSIReader`. See
class docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=end_h-start_h, N=end_w-start_w
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> from matplotlib import pyplot as plt
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> # Read a region at level 0 (baseline / full resolution)
>>> bounds = [1000, 2000, 2000, 3000]
>>> img = wsi.read_bounds(bounds)
>>> plt.imshow(img)
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_bounds(
... bounds,
... resolution=0,
... units="level",
... )
>>> plt.imshow(img)
Note: The field of view remains the same as resolution is varied
when using :func:`read_bounds`.
.. figure:: ../images/read_bounds_tissue.png
:width: 512
:alt: Diagram illustrating read_bounds
This is because the bounds are in the baseline (level 0)
reference frame. Therefore, varying the resolution does not
change what is visible within the output image.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
"""
raise NotImplementedError
[docs]
def read_region(
self: WSIReader,
location: IntPair,
level: int,
size: IntPair,
) -> np.ndarray:
"""Read a region of the whole slide image (OpenSlide format args).
This function is to help with writing code which is backwards
compatible with OpenSlide. As such, it has the same arguments.
This internally calls :func:`read_rect` which should be
implemented by any :class:`WSIReader` subclass. Therefore, some
WSI formats which are not supported by OpenSlide, such as Omnyx
JP2 files, may also be readable with the same syntax.
Args:
location (IntPair):
(x, y) tuple giving the top left pixel in the level 0
reference frame.
level (int):
The level number.
size (IntPair):
(width, height) tuple giving the region size.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3.
"""
return self.read_rect(
location=location,
size=size,
resolution=level,
units="level",
)
[docs]
def slide_thumbnail(
self: WSIReader,
resolution: Resolution = 1.25,
units: Units = "power",
) -> np.ndarray:
"""Read the whole slide image thumbnail (1.25x by default).
For more information on resolution and units see
:func:`read_rect`
Args:
resolution (Resolution):
Resolution to read thumbnail at, default = 1.25
(objective power)
units (Units):
Resolution units, default="power".
Returns:
:class:`numpy.ndarray`:
Thumbnail image.
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> slide_thumbnail = wsi.slide_thumbnail()
"""
slide_dimensions = self.info.slide_dimensions
bounds = (0, 0, *slide_dimensions)
return self.read_bounds(bounds, resolution=resolution, units=units)
[docs]
def tissue_mask(
self: WSIReader,
method: str = "otsu",
resolution: Resolution = 1.25,
units: Units = "power",
**masker_kwargs: dict,
) -> VirtualWSIReader:
"""Create a tissue mask and wrap it in a VirtualWSIReader.
For the morphological method, mpp is used for calculating the
scale of the morphological operations. If no mpp is available,
objective power is used instead to estimate a good scale. This
can be overridden with a custom size, via passing a
`kernel_size` key-word argument in `masker_kwargs`, see
:class:`tissuemask.MorphologicalMasker` for more.
Args:
method (str):
Method to use for creating the mask. Defaults
to 'otsu'. Methods are: otsu, morphological.
resolution (float):
Resolution to produce the mask at.
Defaults to 1.25.
units (Units):
Units of resolution. Defaults to "power".
**masker_kwargs:
Extra kwargs passed to the masker class.
"""
from tiatoolbox.tools import tissuemask
thumbnail = self.slide_thumbnail(resolution, units)
if method not in ["otsu", "morphological"]:
msg = f"Invalid tissue masking method: {method}."
raise ValueError(msg)
if method == "morphological":
mpp = None
power = None
if units == "mpp":
mpp = resolution
elif units == "power":
power = resolution
masker = tissuemask.MorphologicalMasker(
mpp=mpp,
power=power,
**masker_kwargs,
)
elif method == "otsu":
masker = tissuemask.OtsuTissueMasker(**masker_kwargs)
mask_img = masker.fit_transform([thumbnail])[0]
return VirtualWSIReader(mask_img.astype(np.uint8), info=self.info, mode="bool")
[docs]
def save_tiles(
self: WSIReader,
output_dir: str | Path = "tiles",
tile_objective_value: int = 20,
tile_read_size: tuple[int, int] = (5000, 5000),
tile_format: str = ".jpg",
*,
verbose: bool = False,
) -> None:
"""Generate image tiles from whole slide images.
Args:
output_dir(str or :obj:`Path`):
Output directory to save the tiles.
tile_objective_value (int):
Objective value at which tile is generated, default = 20
tile_read_size (tuple(int)):
Tile (width, height), default = (5000, 5000).
tile_format (str):
File format to save image tiles, defaults = ".jpg".
verbose (bool):
Print output, default=False
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> wsi.save_tiles(output_dir='./dev_test',
... tile_objective_value=10,
... tile_read_size=(2000, 2000))
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> slide_param = wsi.info
"""
if verbose:
logger.setLevel(logging.DEBUG)
logger.debug("Processing %s.", self.input_path.name)
output_dir = Path(output_dir, self.input_path.name)
level, slide_dimension, rescale, tile_objective_value = self._find_tile_params(
tile_objective_value,
)
tile_read_size = np.multiply(tile_read_size, rescale)
slide_h = slide_dimension[1]
slide_w = slide_dimension[0]
tile_h = tile_read_size[1]
tile_w = tile_read_size[0]
output_dir = Path(output_dir)
output_dir.mkdir(parents=True)
data = []
vertical_tiles = math.ceil((slide_h - tile_h) / tile_h + 1)
horizontal_tiles = math.ceil((slide_w - tile_w) / tile_w + 1)
for iter_tot, (h, w) in enumerate(np.ndindex(vertical_tiles, horizontal_tiles)):
start_h = h * tile_h
end_h = (h * tile_h) + tile_h
start_w = w * tile_w
end_w = (w * tile_w) + tile_w
end_h = min(end_h, slide_h)
end_w = min(end_w, slide_w)
# convert to baseline reference frame
bounds = start_w, start_h, end_w, end_h
baseline_bounds = tuple(
bound * int(np.round(self.info.level_downsamples[level], 3))
for bound in bounds
)
# Read image region
im = self.read_bounds(baseline_bounds, level)
logger.debug(
"Tile %d: start_w: %d, end_w: %d, start_h: %d, end_h: %d, "
"width: %d, height: %d",
iter_tot,
start_w,
end_w,
start_h,
end_h,
end_w - start_w,
end_h - start_h,
)
# Rescale to the correct objective value
if rescale != 1:
im = utils.transforms.imresize(img=im, scale_factor=1 / rescale)
img_save_name = (
"_".join(
[
"Tile",
str(tile_objective_value),
str(int(start_w / rescale)),
str(int(start_h / rescale)),
],
)
+ tile_format
)
utils.imwrite(image_path=output_dir / img_save_name, img=im)
data.append(
[
iter_tot,
img_save_name,
int(start_w / rescale),
int(end_w / rescale),
int(start_h / rescale),
int(end_h / rescale),
im.shape[0],
im.shape[1],
],
)
# Save information on each slide to relate to the whole slide image
save_tiles_df = pd.DataFrame(
data,
columns=[
"iter",
"Tile_Name",
"start_w",
"end_w",
"start_h",
"end_h",
"size_w",
"size_h",
],
)
save_tiles_df.to_csv(output_dir / "Output.csv", index=False)
# Save slide thumbnail
slide_thumb = self.slide_thumbnail()
utils.imwrite(output_dir / f"slide_thumbnail{tile_format}", img=slide_thumb)
if verbose:
logger.setLevel(logging.INFO)
[docs]
class OpenSlideWSIReader(WSIReader):
"""Reader for OpenSlide supported whole-slide images.
Supported WSI formats:
- Aperio (.svs, .tif)
- Hamamatsu (.vms, .vmu, .ndpi)
- Leica (.scn)
- MIRAX (.mrxs)
- Philips (.tiff)
- Sakura (.svslide)
- Trestle (.tif)
- Ventana (.bif, .tif)
- Generic tiled TIFF (.tif)
Attributes:
openslide_wsi (:obj:`openslide.OpenSlide`)
"""
def __init__(
self: OpenSlideWSIReader,
input_img: str | Path | np.ndarray,
mpp: tuple[Number, Number] | None = None,
power: Number | None = None,
) -> None:
"""Initialize :class:`OpenSlideWSIReader`."""
super().__init__(input_img=input_img, mpp=mpp, power=power)
self.openslide_wsi = openslide.OpenSlide(filename=str(self.input_path))
[docs]
def read_rect(
self: OpenSlideWSIReader,
location: IntPair,
size: IntPair,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict, # noqa: ARG002
) -> np.ndarray:
"""Read a region of the whole slide image at a location and size.
Location is in terms of the baseline image (level 0 / maximum
resolution), and size is the output image size.
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The field of view varies with resolution. For a fixed field of
view see :func:`read_bounds`.
Args:
location (IntPair):
(x, y) tuple giving the top left pixel in the baseline
(level 0) reference frame.
size (IntPair):
(width, height) tuple giving the desired output image
size.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
The units of resolution, default = "level". Supported
units are: microns per pixel (mpp), objective power
(power), pyramid / resolution level (level), pixels per
baseline pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by VirtualWSIReader. See class
docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=size[0], N=size[1]
Example:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load a WSI image
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # Read a region at level 0 (baseline / full resolution)
>>> img = wsi.read_rect(location, size)
>>> # Read a region at 0.5 microns per pixel (mpp)
>>> img = wsi.read_rect(location, size, 0.5, "mpp")
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.5),
... units="mpp",
... )
Note: The field of view varies with resolution when using
:func:`read_rect`.
.. figure:: ../images/read_rect_tissue.png
:width: 512
:alt: Diagram illustrating read_rect
As the location is in the baseline reference frame but the size
(width and height) is the output image size, the field of view
therefore changes as resolution changes.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
.. figure:: ../images/read_rect-interpolated-reads.png
:width: 512
:alt: Diagram illustrating read_rect interpolting between levels
When reading between the levels stored in the WSI, the
coordinates of the requested region are projected to the next
highest resolution. This resolution is then decoded and
downsampled to produce the desired output. This is a major
source of variability in the time take to perform a read
operation. Reads which require reading a large region before
downsampling will be significantly slower than reading at a
fixed level.
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load a WSI image
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # The resolution can be different in x and y, e.g.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.75),
... units="mpp",
... )
>>> # Several units can be used including: objective power,
>>> # microns per pixel, pyramid/resolution level, and
>>> # fraction of baseline.
>>> # E.g. Read a region at an objective power of 10x
>>> img = wsi.read_rect(
... location,
... size,
... resolution=10,
... units="power",
... )
>>> # Read a region at pyramid / resolution level 1
>>> img = wsi.read_rect(
... location,
... size,
... resolution=1,
... units="level",
... )
>>> # Read at a fractional level, this will linearly
>>> # interpolate the downsampling factor between levels.
>>> # E.g. if levels 0 and 1 have a downsampling of 1x and
>>> # 2x of baseline, then level 0.5 will correspond to a
>>> # downsampling factor 1.5x of baseline.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="level",
... )
>>> # Read a region at half of the full / baseline
>>> # resolution.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="baseline",
... )
>>> # Read at a higher resolution than the baseline
>>> # (interpolation applied to output)
>>> img = wsi.read_rect(
... location,
... size,
... resolution=1.25,
... units="baseline",
... )
>>> # Assuming the image has a native mpp of 0.5,
>>> # interpolation will be applied here.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.25,
... units="mpp",
... )
"""
if coord_space == "resolution":
return self.read_rect_at_resolution(
location,
size,
resolution=resolution,
units=units,
interpolation=interpolation,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
# Find parameters for optimal read
(
read_level,
level_location,
level_size,
post_read_scale,
_,
) = self.find_read_rect_params(
location=location,
size=size,
resolution=resolution,
units=units,
)
wsi = self.openslide_wsi
# Read at optimal level and corrected read size
im_region = wsi.read_region(location, read_level, level_size)
im_region = np.array(im_region)
# Apply padding outside the slide area
im_region = utils.image.crop_and_pad_edges(
bounds=utils.transforms.locsize2bounds(level_location, level_size),
max_dimensions=self.info.level_dimensions[read_level],
region=im_region,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
# Resize to correct scale if required
im_region = utils.transforms.imresize(
img=im_region,
scale_factor=post_read_scale,
output_size=size,
interpolation=interpolation,
)
return utils.transforms.background_composite(image=im_region, alpha=False)
[docs]
def read_bounds(
self: OpenSlideWSIReader,
bounds: IntPair,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict, # noqa: ARG002
) -> np.ndarray:
"""Read a region of the whole slide image within given bounds.
Bounds are in terms of the baseline image (level 0 / maximum
resolution).
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The output image size may be different to the width and height
of the bounds as the resolution will affect this. To read a
region with a fixed output image size see :func:`read_rect`.
Args:
bounds (IntBounds):
By default, this is a tuple of (start_x, start_y, end_x,
end_y) i.e. (left, top, right, bottom) of the region in
baseline reference frame. However, with
`coord_space="resolution"`, the bound is expected to be
at the requested resolution system.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
Units of resolution, default="level". Supported units
are: microns per pixel (mpp), objective power (power),
pyramid / resolution level (level), pixels per baseline
pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by :obj:`VirtualWSIReader`. See
class docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=end_h-start_h, N=end_w-start_w
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> from matplotlib import pyplot as plt
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> # Read a region at level 0 (baseline / full resolution)
>>> bounds = [1000, 2000, 2000, 3000]
>>> img = wsi.read_bounds(bounds)
>>> plt.imshow(img)
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_bounds(
... bounds,
... resolution=0,
... units="level",
... )
>>> plt.imshow(img)
Note: The field of view remains the same as resolution is varied
when using :func:`read_bounds`.
.. figure:: ../images/read_bounds_tissue.png
:width: 512
:alt: Diagram illustrating read_bounds
This is because the bounds are in the baseline (level 0)
reference frame. Therefore, varying the resolution does not
change what is visible within the output image.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
"""
# convert from requested to `baseline`
bounds_at_baseline = bounds
if coord_space == "resolution":
bounds_at_baseline = self.bounds_at_resolution_to_baseline(
bounds,
resolution,
units,
)
_, size_at_requested = utils.transforms.bounds2locsize(bounds)
# don't use the `output_size` (`size_at_requested`) here
# because the rounding error at `bounds_at_baseline` leads to
# different `size_at_requested` (keeping same read resolution
# but base image is of different scale)
(
read_level,
bounds_at_read_level,
_,
post_read_scale,
) = self.find_read_bounds_params(
bounds_at_baseline,
resolution=resolution,
units=units,
)
else: # duplicated portion with VirtualReader, factoring out ?
# Find parameters for optimal read
(
read_level,
bounds_at_read_level,
size_at_requested,
post_read_scale,
) = self.find_read_bounds_params(
bounds_at_baseline,
resolution=resolution,
units=units,
)
wsi = self.openslide_wsi
# Read at optimal level and corrected read size
location_at_baseline = bounds_at_baseline[:2]
_, size_at_read_level = utils.transforms.bounds2locsize(bounds_at_read_level)
im_region = wsi.read_region(
location=location_at_baseline,
level=read_level,
size=size_at_read_level,
)
im_region = np.array(im_region)
# Apply padding outside the slide area
im_region = utils.image.crop_and_pad_edges(
bounds=bounds_at_read_level,
max_dimensions=self.info.level_dimensions[read_level],
region=im_region,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
# Resize to correct scale if required
if coord_space == "resolution":
im_region = utils.transforms.imresize(
img=im_region,
output_size=size_at_requested,
interpolation=interpolation,
)
else:
im_region = utils.transforms.imresize(
img=im_region,
scale_factor=post_read_scale,
output_size=size_at_requested,
interpolation=interpolation,
)
return utils.transforms.background_composite(image=im_region, alpha=False)
@staticmethod
def _estimate_mpp(props: openslide.OpenSlide.properties) -> tuple:
"""Find microns per pixel (mpp).
Args:
props (:class:`OpenSlide.properties`):
OpenSlide properties.
Returns:
tuple:
Estimated microns per pixel (mpp).
"""
# Check OpenSlide for mpp metadata first
try:
mpp_x = float(props[openslide.PROPERTY_NAME_MPP_X])
mpp_y = float(props[openslide.PROPERTY_NAME_MPP_Y])
# Fallback to TIFF resolution units and convert to mpp
except KeyError:
tiff_res_units = props.get("tiff.ResolutionUnit")
else:
return mpp_x, mpp_y
try:
x_res = float(props["tiff.XResolution"])
y_res = float(props["tiff.YResolution"])
mpp_x = utils.misc.ppu2mpp(x_res, tiff_res_units)
mpp_y = utils.misc.ppu2mpp(y_res, tiff_res_units)
logger.warning(
"Metadata: Falling back to TIFF resolution tag"
" for microns-per-pixel (MPP).",
)
except KeyError:
logger.warning("Metadata: Unable to determine microns-per-pixel (MPP).")
else:
return mpp_x, mpp_y
# Return None value if metadata cannot be determined.
return None
def _info(self: OpenSlideWSIReader) -> WSIMeta:
"""Openslide WSI meta data reader.
Returns:
WSIMeta:
Metadata information.
"""
props = self.openslide_wsi.properties
if openslide.PROPERTY_NAME_OBJECTIVE_POWER in props:
objective_power = float(props[openslide.PROPERTY_NAME_OBJECTIVE_POWER])
else:
objective_power = None
slide_dimensions = self.openslide_wsi.level_dimensions[0]
level_count = self.openslide_wsi.level_count
level_dimensions = self.openslide_wsi.level_dimensions
level_downsamples = self.openslide_wsi.level_downsamples
vendor = props.get(openslide.PROPERTY_NAME_VENDOR)
mpp = self._estimate_mpp(props)
# Fallback to calculating objective power from mpp
if objective_power is None:
if mpp is not None: # pragma: no cover
objective_power = utils.misc.mpp2common_objective_power(
float(np.mean(mpp)),
)
logger.warning(
"Metadata: Objective power inferred from microns-per-pixel (MPP).",
)
else:
logger.warning("Metadata: Unable to determine objective power.")
return WSIMeta(
file_path=self.input_path,
axes="YXS",
objective_power=objective_power,
slide_dimensions=slide_dimensions,
level_count=level_count,
level_dimensions=level_dimensions,
level_downsamples=level_downsamples,
vendor=vendor,
mpp=mpp,
raw=dict(**props),
)
[docs]
class JP2WSIReader(WSIReader):
"""Class for reading Omnyx JP2 images.
Supported WSI formats:
- Omnyx JPEG-2000 (.jp2)
Attributes:
glymur_wsi (:obj:`glymur.Jp2k`)
"""
def __init__(
self: JP2WSIReader,
input_img: str | Path | np.ndarray,
mpp: tuple[Number, Number] | None = None,
power: Number | None = None,
) -> None:
"""Initialize :class:`OmnyxJP2WSIReader`."""
super().__init__(input_img=input_img, mpp=mpp, power=power)
import glymur
glymur.set_option("lib.num_threads", os.cpu_count() or 1)
self.glymur_jp2 = glymur.Jp2k(filename=str(self.input_path))
[docs]
def read_rect(
self: JP2WSIReader,
location: IntPair,
size: IntPair,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict, # noqa: ARG002
) -> np.ndarray:
"""Read a region of the whole slide image at a location and size.
Location is in terms of the baseline image (level 0 / maximum
resolution), and size is the output image size.
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The field of view varies with resolution. For a fixed field of
view see :func:`read_bounds`.
Args:
location (IntPair):
(x, y) tuple giving the top left pixel in the baseline
(level 0) reference frame.
size (IntPair):
(width, height) tuple giving the desired output image
size.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
The units of resolution, default = "level". Supported
units are: microns per pixel (mpp), objective power
(power), pyramid / resolution level (level), pixels per
baseline pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by VirtualWSIReader. See class
docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=size[0], N=size[1]
Example:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load a WSI image
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # Read a region at level 0 (baseline / full resolution)
>>> img = wsi.read_rect(location, size)
>>> # Read a region at 0.5 microns per pixel (mpp)
>>> img = wsi.read_rect(location, size, 0.5, "mpp")
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.5),
... units="mpp",
... )
Note: The field of view varies with resolution when using
:func:`read_rect`.
.. figure:: ../images/read_rect_tissue.png
:width: 512
:alt: Diagram illustrating read_rect
As the location is in the baseline reference frame but the size
(width and height) is the output image size, the field of view
therefore changes as resolution changes.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
.. figure:: ../images/read_rect-interpolated-reads.png
:width: 512
:alt: Diagram illustrating read_rect interpolting between levels
When reading between the levels stored in the WSI, the
coordinates of the requested region are projected to the next
highest resolution. This resolution is then decoded and
downsampled to produce the desired output. This is a major
source of variability in the time take to perform a read
operation. Reads which require reading a large region before
downsampling will be significantly slower than reading at a
fixed level.
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load a WSI image
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # The resolution can be different in x and y, e.g.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.75),
... units="mpp",
... )
>>> # Several units can be used including: objective power,
>>> # microns per pixel, pyramid/resolution level, and
>>> # fraction of baseline.
>>> # E.g. Read a region at an objective power of 10x
>>> img = wsi.read_rect(
... location,
... size,
... resolution=10,
... units="power",
... )
>>> # Read a region at pyramid / resolution level 1
>>> img = wsi.read_rect(
... location,
... size,
... resolution=1,
... units="level",
... )
>>> # Read at a fractional level, this will linearly
>>> # interpolate the downsampling factor between levels.
>>> # E.g. if levels 0 and 1 have a downsampling of 1x and
>>> # 2x of baseline, then level 0.5 will correspond to a
>>> # downsampling factor 1.5x of baseline.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="level",
... )
>>> # Read a region at half of the full / baseline
>>> # resolution.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="baseline",
... )
>>> # Read at a higher resolution than the baseline
>>> # (interpolation applied to output)
>>> img = wsi.read_rect(
... location,
... size,
... resolution=1.25,
... units="baseline",
... )
>>> # Assuming the image has a native mpp of 0.5,
>>> # interpolation will be applied here.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.25,
... units="mpp",
... )
"""
if coord_space == "resolution":
return self.read_rect_at_resolution(
location,
size,
resolution=resolution,
units=units,
interpolation=interpolation,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
# Find parameters for optimal read
(
read_level,
_,
_,
post_read_scale,
baseline_read_size,
) = self.find_read_rect_params(
location=location,
size=size,
resolution=resolution,
units=units,
)
stride = 2**read_level
glymur_wsi = self.glymur_jp2
bounds = utils.transforms.locsize2bounds(
location=location,
size=baseline_read_size,
)
im_region = utils.image.safe_padded_read(
image=glymur_wsi,
bounds=bounds,
stride=stride,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
im_region = utils.transforms.imresize(
img=im_region,
scale_factor=post_read_scale,
output_size=size,
interpolation=interpolation,
)
return utils.transforms.background_composite(image=im_region, alpha=False)
[docs]
def read_bounds(
self: JP2WSIReader,
bounds: IntBounds,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict, # noqa: ARG002
) -> np.ndarray:
"""Read a region of the whole slide image within given bounds.
Bounds are in terms of the baseline image (level 0 / maximum
resolution).
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The output image size may be different to the width and height
of the bounds as the resolution will affect this. To read a
region with a fixed output image size see :func:`read_rect`.
Args:
bounds (IntBounds):
By default, this is a tuple of (start_x, start_y, end_x,
end_y) i.e. (left, top, right, bottom) of the region in
baseline reference frame. However, with
`coord_space="resolution"`, the bound is expected to be
at the requested resolution system.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
Units of resolution, default="level". Supported units
are: microns per pixel (mpp), objective power (power),
pyramid / resolution level (level), pixels per baseline
pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by :obj:`VirtualWSIReader`. See
class docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=end_h-start_h, N=end_w-start_w
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> from matplotlib import pyplot as plt
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> # Read a region at level 0 (baseline / full resolution)
>>> bounds = [1000, 2000, 2000, 3000]
>>> img = wsi.read_bounds(bounds)
>>> plt.imshow(img)
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_bounds(
... bounds,
... resolution=0,
... units="level",
... )
>>> plt.imshow(img)
Note: The field of view remains the same as resolution is varied
when using :func:`read_bounds`.
.. figure:: ../images/read_bounds_tissue.png
:width: 512
:alt: Diagram illustrating read_bounds
This is because the bounds are in the baseline (level 0)
reference frame. Therefore, varying the resolution does not
change what is visible within the output image.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
"""
bounds_at_baseline = bounds
if coord_space == "resolution":
bounds_at_baseline = self.bounds_at_resolution_to_baseline(
bounds,
resolution,
units,
)
_, size_at_requested = utils.transforms.bounds2locsize(bounds)
# don't use the `output_size` (`size_at_requested`) here
# because the rounding error at `bounds_at_baseline` leads to
# different `size_at_requested` (keeping same read resolution
# but base image is of different scale)
(
read_level,
_,
_,
post_read_scale,
) = self.find_read_bounds_params(
bounds_at_baseline,
resolution=resolution,
units=units,
)
else: # duplicated portion with VirtualReader, factoring out ?
# Find parameters for optimal read
(
read_level,
_, # bounds_at_read_level,
size_at_requested,
post_read_scale,
) = self.find_read_bounds_params(
bounds_at_baseline,
resolution=resolution,
units=units,
)
glymur_wsi = self.glymur_jp2
stride = 2**read_level
im_region = utils.image.safe_padded_read(
image=glymur_wsi,
bounds=bounds_at_baseline,
stride=stride,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
# Resize to correct scale if required
if coord_space == "resolution":
im_region = utils.transforms.imresize(
img=im_region,
output_size=size_at_requested,
interpolation=interpolation,
)
else:
im_region = utils.transforms.imresize(
img=im_region,
scale_factor=post_read_scale,
output_size=size_at_requested,
interpolation=interpolation,
)
return utils.transforms.background_composite(image=im_region, alpha=False)
@staticmethod
def _get_jp2_boxes(
jp2: glymur.jp2.Jp2k,
) -> dict[str, glymur.jp2box.Jp2kBox]:
"""Get JP2 boxes.
Args:
jp2 (glymur.jp2.Jp2k):
Glymur JP2 image object.
Raises:
ValueError:
If the JP2 image header is missing.
Returns:
dict[str, glymur.jp2box.Jp2kBox]:
Dictionary of JP2 boxes. Should contain the keys
"xml " and "cres" for Omnyx JP2 images. For other JP2
images this may contain only the "cres" key or neither.
The image header "ihdr" box is always present.
"""
def find_box(
box: glymur.jp2box.Jp2kBox | None,
box_id: str,
) -> glymur.jp2box.Jp2kBox | None:
"""Find a box by its ID.
Args:
box (glymur.jp2box.Jp2kBox):
A box to search within. If None, returns None.
box_id (str):
Box ID to search for. Must be 4 characters.
Returns:
Optional[glymur.jp2box.Jp2kBox]:
JP2 box with the given ID. If no box is found, returns
"""
expected_len_box_id = 4
msg = f"Box ID must be {expected_len_box_id} characters."
if not len(box_id) == expected_len_box_id: # pragma: no cover
raise ValueError(msg)
if not box or not box.box:
return None
for sub_box in box.box:
if sub_box.box_id == box_id:
return sub_box
return None
header_box = find_box(jp2, "jp2h")
image_header = find_box(header_box, "ihdr")
resolution_box = find_box(header_box, "res ")
capture_resolution_box = find_box(resolution_box, "resc")
xml_box = find_box(jp2, "xml ")
if image_header is None:
msg = "Metadata: JP2 image header missing!"
raise ValueError(msg)
result = {
"ihdr": image_header,
}
if xml_box is not None:
result["xml "] = xml_box
if capture_resolution_box is not None:
result["cres"] = capture_resolution_box
return result
def _info(self: JP2WSIReader) -> WSIMeta:
"""JP2 metadata reader.
Returns:
WSIMeta:
Metadata information.
"""
import glymur
jp2 = self.glymur_jp2
boxes = self._get_jp2_boxes(jp2)
objective_power = None
vendor = None
mpp = None
# Check capture resolution box
if "cres" in boxes:
# Get the resolution in pixels per meter
ppm_x = boxes.get("cres").horizontal_resolution
ppm_y = boxes.get("cres").vertical_resolution
mpp_x = utils.misc.ppu2mpp(ppm_x, "meter")
mpp_y = utils.misc.ppu2mpp(ppm_y, "meter")
mpp = [mpp_x, mpp_y]
# Check for Aperio style/Omnyx XML (overwrites capture
# resolution). This XML contains pipe seperated key values e.g.
# "AppMag = 40 | ..."" in a <description> tag.
if "xml " in boxes:
description = boxes.get("xml ").xml.find("description")
if description is not None and description.text:
matches = re.search(
r"AppMag\s*=\s*(\d+)",
description.text,
flags=re.IGNORECASE,
)
if matches is not None:
objective_power = int(matches[1])
if "Omnyx" in description.text:
vendor = "Omnyx"
if "Aperio" in description.text:
vendor = "Aperio"
matches = re.search(
r"MPP\s*=\s*(\d*\.\d+)",
description.text,
flags=re.IGNORECASE,
)
if matches is not None:
mpp_x = float(matches[1])
mpp_y = float(matches[1])
mpp = [mpp_x, mpp_y]
# Get image dimensions
image_header = boxes["ihdr"]
slide_dimensions = (image_header.width, image_header.height)
# Determine level_count
cod = None
for segment in jp2.codestream.segment:
if isinstance(segment, glymur.codestream.CODsegment):
cod = segment
if cod is None:
logger.warning(
"Metadata: JP2 codestream missing COD segment! "
"Cannot determine number of decompositions (levels)",
)
level_count = 1
else:
level_count = cod.num_res
level_downsamples = [2**n for n in range(level_count)]
level_dimensions = [
(int(slide_dimensions[0] / 2**n), int(slide_dimensions[1] / 2**n))
for n in range(level_count)
]
return WSIMeta(
file_path=self.input_path,
axes="YXS",
objective_power=objective_power,
slide_dimensions=slide_dimensions,
level_count=level_count,
level_dimensions=level_dimensions,
level_downsamples=level_downsamples,
vendor=vendor,
mpp=mpp,
)
[docs]
class VirtualWSIReader(WSIReader):
"""Class for reading non-pyramidal images e.g., visual fields.
Supported formats:
- .jpg
- .png
- :class:`numpy.ndarray`
This reader uses :func:`tiatoolbox.utils.image.sub_pixel_read` to
allow reading low resolution images as if they are larger i.e. with
'virtual' pyramid resolutions. This is useful for reading low
resolution masks as if they were stretched to overlay a higher
resolution WSI.
Extra key-word arguments given to :func:`~WSIReader.read_region` and
:func:`~WSIReader.read_bounds` will be passed to
:func:`~tiatoolbox.utils.image.sub_pixel_read`.
Attributes:
img (:class:`numpy.ndarray`):
Input image as :class:`numpy.ndarray`.
mode (str):
Mode of the input image. Default is 'rgb'. Allowed values
are: rgb, bool, feature. "rgb" mode supports bright-field color images.
"bool" mode supports binary masks,
interpolation in this case will be "nearest" instead of "bicubic".
"feature" mode allows multichannel features.
Args:
input_img (str, :obj:`Path`, :class:`numpy.ndarray`):
Input path to WSI.
info (WSIMeta):
Metadata for the virtual wsi.
mode (str):
Mode of the input image. Default is 'rgb'. Allowed values
are: rgb, bool, feature. "rgb" mode supports bright-field color images.
"bool" mode supports binary masks,
interpolation in this case will be "nearest" instead of "bicubic".
"feature" mode allows multichannel features.
"""
def __init__(
self: VirtualWSIReader,
input_img: str | Path | np.ndarray,
mpp: tuple[Number, Number] | None = None,
power: Number | None = None,
info: WSIMeta | None = None,
mode: str = "rgb",
) -> None:
"""Initialize :class:`VirtualWSIReader`."""
super().__init__(
input_img=input_img,
mpp=mpp,
power=power,
)
if mode.lower() not in ["rgb", "bool", "feature"]:
msg = "Invalid mode."
raise ValueError(msg)
if isinstance(input_img, np.ndarray):
self.img = input_img
else:
self.img = utils.imread(self.input_path)
if mode != "bool" and (
self.img.ndim == 2 or self.img.shape[2] not in [3, 4] # noqa: PLR2004
):
logger.warning(
"The image mode is set to 'feature' as the input"
" dimensions do not match with binary mask or RGB/RGBA.",
)
mode = "feature"
self.mode = mode.lower()
if info is not None:
self._m_info = info
def _info(self: VirtualWSIReader) -> WSIMeta:
"""Visual Field metadata getter.
This generates a WSIMeta object for the slide if none exists.
There is 1 level with dimensions equal to the image and no mpp,
objective power, or vendor data.
Returns:
WSIMeta:
Metadata information.
"""
param = WSIMeta(
file_path=self.input_path,
axes="YSX",
objective_power=None,
# align to XY to match with OpenSlide
slide_dimensions=self.img.shape[:2][::-1],
level_count=1,
level_dimensions=(self.img.shape[:2][::-1],),
level_downsamples=[1.0],
vendor=None,
mpp=None,
raw=None,
)
if self._m_info is None:
self._m_info = param
return self._m_info
def _find_params_from_baseline(
self: VirtualWSIReader,
location: IntPair,
baseline_read_size: IntPair,
) -> tuple[IntPair, IntPair]:
"""Convert read parameters from (virtual) baseline coordinates.
Args:
location (IntPair):
Location of the location to read in (virtual) baseline
coordinates.
baseline_read_size (IntPair):
Size of the region to read in (virtual) baseline
coordinates.
Returns:
tuple(IntPair, IntPair):
Baseline image location and read size.
"""
baseline_size = np.array(self.info.slide_dimensions)
image_size = np.array(self.img.shape[:2][::-1])
size_ratio = image_size / baseline_size
image_location = np.array(location, dtype=np.float32) * size_ratio
read_size = np.array(baseline_read_size) * size_ratio
return image_location, read_size
[docs]
def read_rect(
self: VirtualWSIReader,
location: IntPair,
size: IntPair,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict,
) -> np.ndarray:
"""Read a region of the whole slide image at a location and size.
Location is in terms of the baseline image (level 0 / maximum
resolution), and size is the output image size.
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The field of view varies with resolution. For a fixed field of
view see :func:`read_bounds`.
Args:
location (IntPair):
(x, y) tuple giving the top left pixel in the baseline
(level 0) reference frame.
size (IntPair):
(width, height) tuple giving the desired output image
size.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
The units of resolution, default = "level". Supported
units are: microns per pixel (mpp), objective power
(power), pyramid / resolution level (level), pixels per
baseline pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently, only used by VirtualWSIReader. See class
docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=size[0], N=size[1]
Example:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load a WSI image
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # Read a region at level 0 (baseline / full resolution)
>>> img = wsi.read_rect(location, size)
>>> # Read a region at 0.5 microns per pixel (mpp)
>>> img = wsi.read_rect(location, size, 0.5, "mpp")
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.5),
... units="mpp",
... )
Note: The field of view varies with resolution when using
:func:`read_rect`.
.. figure:: ../images/read_rect_tissue.png
:width: 512
:alt: Diagram illustrating read_rect
As the location is in the baseline reference frame but the size
(width and height) is the output image size, the field of view
therefore changes as resolution changes.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
.. figure:: ../images/read_rect-interpolated-reads.png
:width: 512
:alt: Diagram illustrating read_rect interpolting between levels
When reading between the levels stored in the WSI, the
coordinates of the requested region are projected to the next
highest resolution. This resolution is then decoded and
downsampled to produce the desired output. This is a major
source of variability in the time take to perform a read
operation. Reads which require reading a large region before
downsampling will be significantly slower than reading at a
fixed level.
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load a WSI image
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # The resolution can be different in x and y, e.g.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.75),
... units="mpp",
... )
>>> # Several units can be used including: objective power,
>>> # microns per pixel, pyramid/resolution level, and
>>> # fraction of baseline.
>>> # E.g. Read a region at an objective power of 10x
>>> img = wsi.read_rect(
... location,
... size,
... resolution=10,
... units="power",
... )
>>> # Read a region at pyramid / resolution level 1
>>> img = wsi.read_rect(
... location,
... size,
... resolution=1,
... units="level",
... )
>>> # Read at a fractional level, this will linearly
>>> # interpolate the downsampling factor between levels.
>>> # E.g. if levels 0 and 1 have a downsampling of 1x and
>>> # 2x of baseline, then level 0.5 will correspond to a
>>> # downsampling factor 1.5x of baseline.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="level",
... )
>>> # Read a region at half of the full / baseline
>>> # resolution.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="baseline",
... )
>>> # Read at a higher resolution than the baseline
>>> # (interpolation applied to output)
>>> img = wsi.read_rect(
... location,
... size,
... resolution=1.25,
... units="baseline",
... )
>>> # Assuming the image has a native mpp of 0.5,
>>> # interpolation will be applied here.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.25,
... units="mpp",
... )
"""
if coord_space == "resolution":
return self.read_rect_at_resolution(
location,
size,
resolution=resolution,
units=units,
interpolation=interpolation,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
# Find parameters for optimal read
(
_,
_,
_,
_,
baseline_read_size,
) = self.find_read_rect_params(
location=location,
size=size,
resolution=resolution,
units=units,
)
image_location, image_read_size = self._find_params_from_baseline(
location,
baseline_read_size,
)
bounds = utils.transforms.locsize2bounds(
location=image_location,
size=image_read_size,
)
output_size = None if interpolation in [None, "none"] else size
im_region = utils.image.sub_pixel_read(
self.img,
bounds,
output_size=output_size,
interpolation=interpolation,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
read_kwargs=kwargs,
pad_at_baseline=False,
)
if self.mode == "rgb":
return utils.transforms.background_composite(image=im_region, alpha=False)
return im_region
[docs]
def read_bounds(
self: VirtualWSIReader,
bounds: IntBounds,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict,
) -> np.ndarray:
"""Read a region of the whole slide image within given bounds.
Bounds are in terms of the baseline image (level 0 / maximum
resolution).
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The output image size may be different to the width and height
of the bounds as the resolution will affect this. To read a
region with a fixed output image size see :func:`read_rect`.
Args:
bounds (IntBounds):
By default, this is a tuple of (start_x, start_y, end_x,
end_y) i.e. (left, top, right, bottom) of the region in
baseline reference frame. However, with
`coord_space="resolution"`, the bound is expected to be
at the requested resolution system.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
Units of resolution, default="level". Supported units
are: microns per pixel (mpp), objective power (power),
pyramid / resolution level (level), pixels per baseline
pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by :obj:`VirtualWSIReader`. See
class docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=end_h-start_h, N=end_w-start_w
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> from matplotlib import pyplot as plt
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> # Read a region at level 0 (baseline / full resolution)
>>> bounds = [1000, 2000, 2000, 3000]
>>> img = wsi.read_bounds(bounds)
>>> plt.imshow(img)
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_bounds(
... bounds,
... resolution=0,
... units="level",
... )
>>> plt.imshow(img)
Note: The field of view remains the same as resolution is varied
when using :func:`read_bounds`.
.. figure:: ../images/read_bounds_tissue.png
:width: 512
:alt: Diagram illustrating read_bounds
This is because the bounds are in the baseline (level 0)
reference frame. Therefore, varying the resolution does not
change what is visible within the output image.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
"""
# convert from requested to `baseline`
bounds_at_baseline = bounds
if coord_space == "resolution":
bounds_at_baseline = self.bounds_at_resolution_to_baseline(
bounds,
resolution,
units,
)
_, size_at_requested = utils.transforms.bounds2locsize(bounds)
# * Find parameters for optimal read
# don't use the `output_size` (`size_at_requested`) here
# because the rounding error at `bounds_at_baseline` leads to
# different `size_at_requested` (keeping same read resolution
# but base image is of different scale)
_, _, _, post_read_scale = self.find_read_bounds_params(
bounds_at_baseline,
resolution=resolution,
units=units,
)
else:
# * Find parameters for optimal read
_, _, size_at_requested, post_read_scale = self.find_read_bounds_params(
bounds_at_baseline,
resolution=resolution,
units=units,
)
location_at_read, size_at_read = self._find_params_from_baseline(
*utils.transforms.bounds2locsize(bounds_at_baseline),
)
bounds_at_read = utils.transforms.locsize2bounds(location_at_read, size_at_read)
if interpolation in [None, "none"]:
interpolation = None
if interpolation == "optimise" and self.mode == "bool":
interpolation = "nearest"
im_region = utils.image.sub_pixel_read(
self.img,
bounds_at_read,
output_size=size_at_requested,
interpolation=interpolation,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
read_kwargs=kwargs,
pad_at_baseline=False,
)
if coord_space == "resolution":
# do this to enforce output size is as defined by input bounds
im_region = utils.transforms.imresize(
img=im_region,
output_size=size_at_requested,
)
else:
im_region = utils.transforms.imresize(
img=im_region,
scale_factor=post_read_scale,
output_size=size_at_requested,
)
if self.mode == "rgb":
return utils.transforms.background_composite(image=im_region, alpha=False)
return im_region
[docs]
class ArrayView:
"""An object for viewing a zarr array with a different index ordering.
Used to allow YXS index order reads for arrays with axes in other
orders such as SYX. Currently supported axes are:
- YXS
- SYX
"""
def __init__(self: ArrayView, array: zarr.Array, axes: str) -> None:
"""Initialise the view object.
Args:
array (zarr.Array):
Zarr Array to read from.
axes (str):
Axes ordering string. Allowed values are YXS and SYX.
"""
self.array = array
self.axes = axes
self._shape = dict(zip(self.axes, self.array.shape))
@property
def shape(self: ArrayView) -> tuple:
"""Return array shape."""
try:
return tuple(self._shape[c] for c in "YXC")
except KeyError:
return tuple(self._shape[c] for c in "YXS")
def __getitem__(self: ArrayView, index: int) -> np.ndarray:
"""Get an item from the dataset."""
# Normalize to a tuple of length = len(self.axes)
if not isinstance(index, tuple):
index = (index,)
while len(index) < len(self.axes):
index = (*index, slice(None))
if self.axes in ("YXS", "YXC"):
return self.array[index]
if self.axes in ("SYX", "CYX"):
y, x, s = index
index = (s, y, x)
return np.rollaxis(self.array[index], 0, 3)
msg = f"Unsupported axes `{self.axes}`."
raise ValueError(msg)
[docs]
class TIFFWSIReader(WSIReader):
"""Define Tiff WSI Reader."""
def __init__(
self: TIFFWSIReader,
input_img: str | Path | np.ndarray,
mpp: tuple[Number, Number] | None = None,
power: Number | None = None,
series: str = "auto",
cache_size: int = 2**28,
) -> None:
"""Initialize :class:`TIFFWSIReader`."""
super().__init__(input_img=input_img, mpp=mpp, power=power)
self.tiff = tifffile.TiffFile(self.input_path)
self._axes = self.tiff.pages[0].axes
# Flag which is True if the image is a simple single page tile TIFF
is_single_page_tiled = all(
[
self.tiff.pages[0].is_tiled,
# Not currently supporting multi-page images
not self.tiff.is_multipage,
# Currently only supporting single page generic tiled TIFF
len(self.tiff.pages) == 1,
],
)
if not any(
[
self.tiff.is_svs,
self.tiff.is_ome,
is_single_page_tiled,
self.tiff.is_bigtiff,
]
):
msg = "Unsupported TIFF WSI format."
raise ValueError(msg)
self.series_n = series
if self.tiff.series is None or len(self.tiff.series) == 0: # pragma: no cover
msg = "TIFF does not contain any valid series."
raise FileNotSupportedError(msg)
# Find the largest series if series="auto"
if self.series_n == "auto":
all_series = self.tiff.series or []
def page_area(page: tifffile.TiffPage) -> float:
"""Calculate the area of a page."""
return np.prod(
TIFFWSIReaderDelegate.canonical_shape(self._axes, page.shape)[:2]
)
series_areas = [page_area(s.pages[0]) for s in all_series] # skipcq
self.series_n = np.argmax(series_areas)
self._tiff_series = self.tiff.series[self.series_n]
self._zarr_store = tifffile.imread(
self.input_path,
series=self.series_n,
aszarr=True,
)
self._zarr_lru_cache = zarr.LRUStoreCache(self._zarr_store, max_size=cache_size)
self._zarr_group = zarr.open(self._zarr_lru_cache)
if not isinstance(self._zarr_group, zarr.hierarchy.Group): # pragma: no cover
group = zarr.hierarchy.group()
group[0] = self._zarr_group
self._zarr_group = group
self.level_arrays = {
int(key): ArrayView(array, axes=self._axes)
for key, array in self._zarr_group.items()
}
# ensure level arrays are sorted by descending area
self.level_arrays = dict(
sorted(
self.level_arrays.items(),
key=lambda x: -np.prod(
TIFFWSIReaderDelegate.canonical_shape(
self._axes, x[1].array.shape[:2]
)
),
)
)
self.tiff_reader_delegate = TIFFWSIReaderDelegate(self, self.level_arrays)
def _get_ome_xml(self: TIFFWSIReader) -> ElementTree.Element:
"""Parse OME-XML from the description of the first IFD (page).
Returns:
ElementTree.Element:
OME-XML root element.
"""
description = self.tiff.pages[0].description
return ElementTree.fromstring(description)
def _parse_ome_metadata(self: TIFFWSIReader) -> dict:
"""Extract OME specific metadata.
Returns:
dict:
Dictionary of kwargs for WSIMeta.
"""
# The OME-XML should be in each IFD but is optional. It must be
# present in the first IFD. We simply get the description from
# the first IFD.
xml = self._get_ome_xml()
objective_power = self._get_ome_objective_power(xml)
mpp = self._get_ome_mpp(xml)
return {
"objective_power": objective_power,
"vendor": None,
"mpp": mpp,
"raw": {
"Description": self.tiff.pages[0].description,
"OME-XML": xml,
},
}
def _get_ome_objective_power(
self: TIFFWSIReader,
xml: ElementTree.Element | None = None,
) -> float | None:
"""Get the objective power from the OME-XML.
Args:
xml (ElementTree.Element, optional):
OME-XML root element. Defaults to None. If None, the
OME-XML will be parsed from the first IFD.
Returns:
float:
Objective power.
"""
xml = xml or self._get_ome_xml()
namespaces = {"ome": "http://www.openmicroscopy.org/Schemas/OME/2016-06"}
xml_series = xml.findall("ome:Image", namespaces)[self.series_n]
instrument_ref = xml_series.find("ome:InstrumentRef", namespaces)
if instrument_ref is None:
return None
objective_settings = xml_series.find("ome:ObjectiveSettings", namespaces)
instrument_ref_id = instrument_ref.attrib["ID"]
objective_settings_id = objective_settings.attrib["ID"]
instruments = {
instrument.attrib["ID"]: instrument
for instrument in xml.findall("ome:Instrument", namespaces)
}
objectives = {
(instrument_id, objective.attrib["ID"]): objective
for instrument_id, instrument in instruments.items()
for objective in instrument.findall("ome:Objective", namespaces)
}
try:
objective = objectives[(instrument_ref_id, objective_settings_id)]
return float(objective.attrib.get("NominalMagnification"))
except KeyError as e:
msg = "No matching Instrument for image InstrumentRef in OME-XML."
raise KeyError(
msg,
) from e
def _get_ome_mpp(
self: TIFFWSIReader,
xml: ElementTree.Element | None = None,
) -> list[float] | None:
"""Get the microns per pixel from the OME-XML.
Args:
xml (ElementTree.Element, optional):
OME-XML root element. Defaults to None. If None, the
OME-XML will be parsed from the first IFD.
Returns:
Optional[List[float]]:
Microns per pixel.
"""
xml = xml or self._get_ome_xml()
namespaces = {"ome": "http://www.openmicroscopy.org/Schemas/OME/2016-06"}
xml_series = xml.findall("ome:Image", namespaces)[self.series_n]
xml_pixels = xml_series.find("ome:Pixels", namespaces)
mppx = xml_pixels.attrib.get("PhysicalSizeX")
mppy = xml_pixels.attrib.get("PhysicalSizeY")
if mppx is not None and mppy is not None:
return [mppx, mppy]
if mppx is not None or mppy is not None:
logger.warning("Only one MPP value found. Using it for both X and Y.")
return [mppx or mppy] * 2
return None
def _info(self: TIFFWSIReader) -> WSIMeta:
"""TIFF metadata constructor.
Returns:
WSIMeta:
Containing metadata.
"""
level_count = len(self.level_arrays)
level_dimensions = [
np.array(
TIFFWSIReaderDelegate.canonical_shape(self._axes, p.array.shape)[:2][
::-1
]
)
for p in self.level_arrays.values()
]
slide_dimensions = level_dimensions[0]
level_downsamples = [(level_dimensions[0] / x)[0] for x in level_dimensions]
# The tags attribute object will not pickle or deepcopy,
# so a copy with only python values or tifffile enums is made.
tifffile_tags = self.tiff.pages[0].tags.items()
tiff_tags = {
code: {
"code": code,
"value": tag.value,
"name": tag.name,
"count": tag.count,
"type": tag.dtype,
}
for code, tag in tifffile_tags
}
if self.tiff.is_svs:
filetype_params = TIFFWSIReaderDelegate.parse_svs_metadata(self.tiff.pages)
elif self.tiff.is_ome:
filetype_params = self._parse_ome_metadata()
else:
filetype_params = TIFFWSIReaderDelegate.parse_generic_tiff_metadata(
self.tiff.pages
)
filetype_params["raw"]["TIFF Tags"] = tiff_tags
return WSIMeta(
file_path=self.input_path,
slide_dimensions=slide_dimensions,
axes=self._axes,
level_count=level_count,
level_dimensions=level_dimensions,
level_downsamples=level_downsamples,
**filetype_params,
)
[docs]
def read_rect(
self: TIFFWSIReader,
location: IntPair,
size: IntPair,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict,
) -> np.ndarray:
"""See TIFFWSIReaderDelegate.read_rect docs for details."""
return self.tiff_reader_delegate.read_rect(
location,
size,
resolution,
units,
interpolation,
pad_mode,
pad_constant_values,
coord_space,
**kwargs,
)
[docs]
def read_bounds(
self: TIFFWSIReader,
bounds: IntBounds,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict,
) -> np.ndarray:
"""See TIFFWSIReaderDelegate.read_bounds docs for details."""
return self.tiff_reader_delegate.read_bounds(
bounds,
resolution,
units,
interpolation,
pad_mode,
pad_constant_values,
coord_space,
**kwargs,
)
[docs]
class FsspecJsonWSIReader(WSIReader):
"""Reader for fsspec zarr json generated by: tiatoolbox/utils/tiff_to_fsspec.py.
The fsspec zarr json file represents a SVS or TIFF file
that be accessed using byte range HTTP API.
All the information on the chunk locations in the SVS or TIFF file
is outlined as byte-ranges in the JSON,
so the reader requests only chunks that are needed to display requested tiles,
rather than the entire SVS or TIFF file.
"""
def __init__(
self: FsspecJsonWSIReader,
input_img: str | Path | np.ndarray,
mpp: tuple[Number, Number] | None = None,
power: Number | None = None,
cache_size: int = 2**28,
) -> None:
"""Initialize :class:`FsspecJsonWSIReader`."""
super().__init__(input_img=input_img, mpp=mpp, power=power)
jpeg_codec = Jpeg()
register_codec(jpeg_codec, "imagecodecs_jpeg")
jpeg2k_codec = Jpeg2k()
register_codec(jpeg2k_codec, "imagecodecs_jpeg2k")
lzw_codec = Lzw()
register_codec(lzw_codec, "imagecodecs_lzw")
delta_codec = Delta()
register_codec(delta_codec, "imagecodecs_delta")
mapper = fsspec.get_mapper(
"reference://", fo=str(input_img), target_protocol="file"
)
self._zarr_array = zarr.open(mapper, mode="r")
self.__set_axes()
self._zarr_store = self._zarr_array.store
self._zarr_lru_cache = zarr.LRUStoreCache(self._zarr_store, max_size=cache_size)
self._zarr_group = zarr.open(self._zarr_lru_cache)
if not isinstance(self._zarr_group, zarr.hierarchy.Group): # pragma: no cover
group = zarr.hierarchy.group()
group[0] = self._zarr_group
self._zarr_group = group
self.level_arrays = {
int(key): ArrayView(array, axes=self._axes)
for key, array in self._zarr_group.items()
}
# ensure level arrays are sorted by descending area
self.level_arrays = dict(
sorted(
self.level_arrays.items(),
key=lambda x: -np.prod(
TIFFWSIReaderDelegate.canonical_shape(
self._axes, x[1].array.shape[:2]
)
),
)
)
self.tiff_reader_delegate = TIFFWSIReaderDelegate(self, self.level_arrays)
def __set_axes(self) -> None: # pragma: no cover
"""Loads axes from the json file.
In case zarr array has a group 0 at root,
loads axes from the layer 0.
In case the zarr array doesn't have a group 0 at
root, loads axes from attrs at root.
"""
if isinstance(self._zarr_array, zarr.hierarchy.Group):
if "0" in self._zarr_array:
zattrs = self._zarr_array["0"].attrs
if "_ARRAY_DIMENSIONS" in zattrs:
self._axes = "".join(
zattrs["_ARRAY_DIMENSIONS"]
) # Concatenate dimensions
else:
msg = "'_ARRAY_DIMENSIONS' does not exist in the group '0'."
raise ValueError(msg)
else:
msg = "The group '0' does not exist in the zarr_array."
raise ValueError(msg)
else:
zattrs_path = self._zarr_array.attrs
if "_ARRAY_DIMENSIONS" in zattrs_path:
self._axes = "".join(
zattrs_path["_ARRAY_DIMENSIONS"]
) # Concatenate dimensions
else:
msg = "'_ARRAY_DIMENSIONS' does not exist in the root .zattrs."
raise ValueError(msg)
[docs]
@staticmethod
def is_valid_zarr_fsspec(file_path: str) -> bool:
"""Check if the input path is a valid Zarr fsspec JSON file.
Checks if the file_path is a valid Zarr fsspec JSON file generated by:
tiatoolbox/utils/tiff_to_fsspec.py
Args:
file_path: str Path to the file to check.
Returns:
bool: True if the file is a valid Zarr fsspec JSON file
"""
path = Path(file_path)
if path.suffix.lower() != ".json":
return False
try:
with fsspec.open(file_path, "r") as file:
data = json.load(file)
# Basic validation for fsspec Zarr JSON structure
if ".zattrs" not in data:
logger.error("Field .zattrs missing in '%s'.", file_path)
return False
return True # noqa: TRY300
except json.JSONDecodeError as e:
logger.error("Invalid JSON file: %s", e)
return False
except (OSError, ValueError) as e:
logger.error("An error occurred: %s", e)
return False
def _info(self: FsspecJsonWSIReader) -> WSIMeta:
"""TIFF metadata constructor.
Returns:
WSIMeta:
Containing metadata.
"""
level_count = len(self.level_arrays)
level_dimensions = [
np.array(
TIFFWSIReaderDelegate.canonical_shape(self._axes, p.array.shape)[:2][
::-1
]
)
for p in self.level_arrays.values()
]
slide_dimensions = level_dimensions[0]
level_downsamples = [(level_dimensions[0] / x)[0] for x in level_dimensions]
zarr_attrs = self._zarr_array.attrs
filetype_params = {}
# Check for "multiscales" and extract metadata
if "multiscales" in zarr_attrs: # pragma: no cover
multiscales = zarr_attrs[
"multiscales"
] # List of multiscale metadata entries
for entry in multiscales:
filetype_params = entry.get("metadata", {})
return WSIMeta(
file_path=self.input_path,
slide_dimensions=slide_dimensions,
axes=self._axes,
level_count=level_count,
level_dimensions=level_dimensions,
level_downsamples=level_downsamples,
**filetype_params,
)
[docs]
def read_rect(
self: FsspecJsonWSIReader,
location: IntPair,
size: IntPair,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict,
) -> np.ndarray:
"""See TIFFWSIReaderDelegate.read_rect docs for details."""
return self.tiff_reader_delegate.read_rect(
location,
size,
resolution,
units,
interpolation,
pad_mode,
pad_constant_values,
coord_space,
**kwargs,
)
[docs]
def read_bounds(
self: FsspecJsonWSIReader,
bounds: IntBounds,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict,
) -> np.ndarray:
"""See TIFFWSIReaderDelegate.read_bounds docs for details."""
return self.tiff_reader_delegate.read_bounds(
bounds,
resolution,
units,
interpolation,
pad_mode,
pad_constant_values,
coord_space,
**kwargs,
)
[docs]
class TIFFWSIReaderDelegate:
"""Delegate class to handle image reading operations.
Currently used in FsspecJsonWSIReader and TIFFWSIReader.
"""
def __init__(self, reader: WSIReader, level_arrays: dict[int, ArrayView]) -> None:
"""Initialize the delegate with a reader and level arrays.
Args:
reader (WSIReader): An instance of FsspecJsonWSIReader or TIFFWSIReader.
level_arrays (dict[int, ArrayView]): Dictionary of level arrays.
"""
self.reader = reader
self.level_arrays = level_arrays
[docs]
@staticmethod
def canonical_shape(axes: str, shape: tuple[int, int]) -> tuple[int, int]:
"""Make a level shape tuple in YXS order.
Args:
axes (str): The axes format.
shape (tuple[int, int]): Input shape tuple.
Returns:
tuple[int, int]: Shape in YXS order.
"""
if axes == "YXS":
return shape
if axes == "SYX":
return np.roll(shape, -1)
msg = f"Unsupported axes `{axes}`."
raise ValueError(msg)
[docs]
def read_rect(
self,
location: IntPair,
size: IntPair,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict, # noqa: ARG002
) -> np.ndarray:
"""Read a region of the whole slide image at a location and size.
Location is in terms of the baseline image (level 0 / maximum
resolution), and size is the output image size.
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The field of view varies with resolution. For a fixed field of
view see :func:`read_bounds`.
Args:
location (IntPair):
(x, y) tuple giving the top left pixel in the baseline
(level 0) reference frame.
size (IntPair):
(width, height) tuple giving the desired output image
size.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
The units of resolution, default = "level". Supported
units are: microns per pixel (mpp), objective power
(power), pyramid / resolution level (level), pixels per
baseline pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by VirtualWSIReader. See class
docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=size[0], N=size[1]
Example:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load a WSI image
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # Read a region at level 0 (baseline / full resolution)
>>> img = wsi.read_rect(location, size)
>>> # Read a region at 0.5 microns per pixel (mpp)
>>> img = wsi.read_rect(location, size, 0.5, "mpp")
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.5),
... units="mpp",
... )
Note: The field of view varies with resolution when using
:func:`read_rect`.
.. figure:: ../images/read_rect_tissue.png
:width: 512
:alt: Diagram illustrating read_rect
As the location is in the baseline reference frame but the size
(width and height) is the output image size, the field of view
therefore changes as resolution changes.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
.. figure:: ../images/read_rect-interpolated-reads.png
:width: 512
:alt: Diagram illustrating read_rect interpolting between levels
When reading between the levels stored in the WSI, the
coordinates of the requested region are projected to the next
highest resolution. This resolution is then decoded and
downsampled to produce the desired output. This is a major
source of variability in the time take to perform a read
operation. Reads which require reading a large region before
downsampling will be significantly slower than reading at a
fixed level.
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load a WSI image
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # The resolution can be different in x and y, e.g.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.75),
... units="mpp",
... )
>>> # Several units can be used including: objective power,
>>> # microns per pixel, pyramid/resolution level, and
>>> # fraction of baseline.
>>> # E.g. Read a region at an objective power of 10x
>>> img = wsi.read_rect(
... location,
... size,
... resolution=10,
... units="power",
... )
>>> # Read a region at pyramid / resolution level 1
>>> img = wsi.read_rect(
... location,
... size,
... resolution=1,
... units="level",
... )
>>> # Read at a fractional level, this will linearly
>>> # interpolate the downsampling factor between levels.
>>> # E.g. if levels 0 and 1 have a downsampling of 1x and
>>> # 2x of baseline, then level 0.5 will correspond to a
>>> # downsampling factor 1.5x of baseline.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="level",
... )
>>> # Read a region at half of the full / baseline
>>> # resolution.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="baseline",
... )
>>> # Read at a higher resolution than the baseline
>>> # (interpolation applied to output)
>>> img = wsi.read_rect(
... location,
... size,
... resolution=1.25,
... units="baseline",
... )
>>> # Assuming the image has a native mpp of 0.5,
>>> # interpolation will be applied here.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.25,
... units="mpp",
... )
"""
if coord_space == "resolution":
im_region = self.reader.read_rect_at_resolution(
location,
size,
resolution=resolution,
units=units,
interpolation=interpolation,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
return utils.transforms.background_composite(im_region, alpha=False)
# Find parameters for optimal read
(
read_level,
level_read_location,
level_read_size,
post_read_scale,
_,
) = self.reader.find_read_rect_params(
location=location,
size=size,
resolution=resolution,
units=units,
)
bounds = utils.transforms.locsize2bounds(
location=level_read_location,
size=level_read_size,
)
im_region = utils.image.safe_padded_read(
image=self.level_arrays[read_level],
bounds=bounds,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
im_region = utils.transforms.imresize(
img=im_region,
scale_factor=post_read_scale,
output_size=size,
interpolation=interpolation,
)
return utils.transforms.background_composite(image=im_region, alpha=False)
[docs]
def read_bounds(
self: TIFFWSIReaderDelegate,
bounds: IntBounds,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict,
) -> np.ndarray:
"""Read a region of the whole slide image within given bounds.
Bounds are in terms of the baseline image (level 0 / maximum
resolution).
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The output image size may be different to the width and height
of the bounds as the resolution will affect this. To read a
region with a fixed output image size see :func:`read_rect`.
Args:
bounds (IntBounds):
By default, this is a tuple of (start_x, start_y, end_x,
end_y) i.e. (left, top, right, bottom) of the region in
baseline reference frame. However, with
`coord_space="resolution"`, the bound is expected to be
at the requested resolution system.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
Units of resolution, default="level". Supported units
are: microns per pixel (mpp), objective power (power),
pyramid / resolution level (level), pixels per baseline
pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by :obj:`VirtualWSIReader`. See
class docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=end_h-start_h, N=end_w-start_w
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> from matplotlib import pyplot as plt
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> # Read a region at level 0 (baseline / full resolution)
>>> bounds = [1000, 2000, 2000, 3000]
>>> img = wsi.read_bounds(bounds)
>>> plt.imshow(img)
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_bounds(
... bounds,
... resolution=0,
... units="level",
... )
>>> plt.imshow(img)
Note: The field of view remains the same as resolution is varied
when using :func:`read_bounds`.
.. figure:: ../images/read_bounds_tissue.png
:width: 512
:alt: Diagram illustrating read_bounds
This is because the bounds are in the baseline (level 0)
reference frame. Therefore, varying the resolution does not
change what is visible within the output image.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
"""
bounds_at_baseline = bounds
if coord_space == "resolution":
bounds_at_baseline = self.reader.bounds_at_resolution_to_baseline(
bounds,
resolution,
units,
)
_, size_at_requested = utils.transforms.bounds2locsize(bounds)
# don't use the `output_size` (`size_at_requested`) here
# because the rounding error at `bounds_at_baseline` leads to
# different `size_at_requested` (keeping same read resolution
# but base image is of different scale)
(
read_level,
bounds_at_read_level,
_,
post_read_scale,
) = self.reader.find_read_bounds_params(
bounds_at_baseline,
resolution=resolution,
units=units,
)
else: # duplicated portion with VirtualReader, factoring out ?
# Find parameters for optimal read
(
read_level,
bounds_at_read_level,
size_at_requested,
post_read_scale,
) = self.reader.find_read_bounds_params(
bounds_at_baseline,
resolution=resolution,
units=units,
)
im_region = utils.image.sub_pixel_read(
image=self.level_arrays[read_level],
bounds=bounds_at_read_level,
output_size=size_at_requested,
interpolation=interpolation,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
read_kwargs=kwargs,
pad_at_baseline=False,
)
if coord_space == "resolution":
# do this to enforce output size is as defined by input bounds
im_region = utils.transforms.imresize(
img=im_region,
output_size=size_at_requested,
)
else:
im_region = utils.transforms.imresize(
img=im_region,
scale_factor=post_read_scale,
output_size=size_at_requested,
)
return im_region
[docs]
class DICOMWSIReader(WSIReader):
"""Define DICOM WSI Reader."""
wsidicom = None
def __init__(
self: DICOMWSIReader,
input_img: str | Path | np.ndarray,
mpp: tuple[Number, Number] | None = None,
power: Number | None = None,
) -> None:
"""Initialize :class:`DICOMWSIReader`."""
from wsidicom import WsiDicom
super().__init__(input_img, mpp, power)
self.wsi = WsiDicom.open(input_img)
def _info(self: DICOMWSIReader) -> WSIMeta:
"""WSI metadata constructor.
Returns:
WSIMeta:
Containing metadata.
"""
level_dimensions = [
(level.size.width, level.size.height) for level in self.wsi.levels
]
level_downsamples = [
np.mean(
[
level_dimensions[0][0] / level.size.width,
level_dimensions[0][1] / level.size.height,
],
)
for level in self.wsi.levels
]
dataset = self.wsi.levels.base_level.datasets[0]
# Get pixel spacing in mm from DICOM file and convert to um/px (mpp)
mm_per_pixel = dataset.pixel_spacing
mpp = (mm_per_pixel.width * 1e3, mm_per_pixel.height * 1e3)
return WSIMeta(
slide_dimensions=level_dimensions[0],
level_dimensions=level_dimensions,
level_downsamples=level_downsamples,
axes="YXS",
mpp=mpp,
level_count=len(level_dimensions),
vendor=dataset.Manufacturer,
)
[docs]
def read_rect(
self: DICOMWSIReader,
location: IntPair,
size: IntPair,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict, # noqa: ARG002
) -> np.ndarray:
"""Read a region of the whole slide image at a location and size.
Location is in terms of the baseline image (level 0 / maximum
resolution), and size is the output image size.
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The field of view varies with resolution. For a fixed field of
view see :func:`read_bounds`.
Args:
location (IntPair):
(x, y) tuple giving the top left pixel in the baseline
(level 0) reference frame.
size (IntPair):
(width, height) tuple giving the desired output image
size.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
The units of resolution, default = "level". Supported
units are: microns per pixel (mpp), objective power
(power), pyramid / resolution level (level), pixels per
baseline pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by VirtualWSIReader. See class
docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=size[0], N=size[1]
Example:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load a WSI image
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # Read a region at level 0 (baseline / full resolution)
>>> img = wsi.read_rect(location, size)
>>> # Read a region at 0.5 microns per pixel (mpp)
>>> img = wsi.read_rect(location, size, 0.5, "mpp")
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.5),
... units="mpp",
... )
Note: The field of view varies with resolution when using
:func:`read_rect`.
.. figure:: ../images/read_rect_tissue.png
:width: 512
:alt: Diagram illustrating read_rect
As the location is in the baseline reference frame but the size
(width and height) is the output image size, the field of view
therefore changes as resolution changes.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
.. figure:: ../images/read_rect-interpolated-reads.png
:width: 512
:alt: Diagram illustrating read_rect interpolting between levels
When reading between the levels stored in the WSI, the
coordinates of the requested region are projected to the next
highest resolution. This resolution is then decoded and
downsampled to produce the desired output. This is a major
source of variability in the time take to perform a read
operation. Reads which require reading a large region before
downsampling will be significantly slower than reading at a
fixed level.
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load a WSI image
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # The resolution can be different in x and y, e.g.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.75),
... units="mpp",
... )
>>> # Several units can be used including: objective power,
>>> # microns per pixel, pyramid/resolution level, and
>>> # fraction of baseline.
>>> # E.g. Read a region at an objective power of 10x
>>> img = wsi.read_rect(
... location,
... size,
... resolution=10,
... units="power",
... )
>>> # Read a region at pyramid / resolution level 1
>>> img = wsi.read_rect(
... location,
... size,
... resolution=1,
... units="level",
... )
>>> # Read at a fractional level, this will linearly
>>> # interpolate the downsampling factor between levels.
>>> # E.g. if levels 0 and 1 have a downsampling of 1x and
>>> # 2x of baseline, then level 0.5 will correspond to a
>>> # downsampling factor 1.5x of baseline.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="level",
... )
>>> # Read a region at half of the full / baseline
>>> # resolution.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="baseline",
... )
>>> # Read at a higher resolution than the baseline
>>> # (interpolation applied to output)
>>> img = wsi.read_rect(
... location,
... size,
... resolution=1.25,
... units="baseline",
... )
>>> # Assuming the image has a native mpp of 0.5,
>>> # interpolation will be applied here.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.25,
... units="mpp",
... )
"""
if coord_space == "resolution":
return self.read_rect_at_resolution(
location,
size,
resolution=resolution,
units=units,
interpolation=interpolation,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
# Find parameters for optimal read
(
read_level,
level_location,
level_read_size,
post_read_scale,
_,
) = self.find_read_rect_params(
location=location,
size=size,
resolution=resolution,
units=units,
)
wsi = self.wsi
# Read at optimal level and corrected read size
level_size = self.info.level_dimensions[read_level]
constrained_read_bounds = utils.image.find_overlap(
read_location=level_location,
read_size=level_read_size,
image_size=level_size,
)
_, constrained_read_size = utils.transforms.bounds2locsize(
constrained_read_bounds,
)
dicom_level = wsi.levels[read_level].level
im_region = wsi.read_region(location, dicom_level, constrained_read_size)
im_region = np.array(im_region)
# Apply padding outside the slide area
level_read_bounds = utils.transforms.locsize2bounds(
level_location,
level_read_size,
)
im_region = utils.image.crop_and_pad_edges(
bounds=level_read_bounds,
max_dimensions=level_size,
region=im_region,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
# Resize to correct scale if required
im_region = utils.transforms.imresize(
img=im_region,
scale_factor=post_read_scale,
output_size=tuple(np.array(size).astype(int)),
interpolation=interpolation,
)
return utils.transforms.background_composite(image=im_region, alpha=False)
[docs]
def read_bounds(
self: DICOMWSIReader,
bounds: IntBounds,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict, # noqa: ARG002
) -> np.ndarray:
"""Read a region of the whole slide image within given bounds.
Bounds are in terms of the baseline image (level 0 / maximum
resolution).
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The output image size may be different to the width and height
of the bounds as the resolution will affect this. To read a
region with a fixed output image size see :func:`read_rect`.
Args:
bounds (IntBounds):
By default, this is a tuple of (start_x, start_y, end_x,
end_y) i.e. (left, top, right, bottom) of the region in
baseline reference frame. However, with
`coord_space="resolution"`, the bound is expected to be
at the requested resolution system.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
Units of resolution, default="level". Supported units
are: microns per pixel (mpp), objective power (power),
pyramid / resolution level (level), pixels per baseline
pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by :obj:`VirtualWSIReader`. See
class docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=end_h-start_h, N=end_w-start_w
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> from matplotlib import pyplot as plt
>>> wsi = WSIReader.open(input_img="./CMU-1.ndpi")
>>> # Read a region at level 0 (baseline / full resolution)
>>> bounds = [1000, 2000, 2000, 3000]
>>> img = wsi.read_bounds(bounds)
>>> plt.imshow(img)
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_bounds(
... bounds,
... resolution=0,
... units="level",
... )
>>> plt.imshow(img)
Note: The field of view remains the same as resolution is varied
when using :func:`read_bounds`.
.. figure:: ../images/read_bounds_tissue.png
:width: 512
:alt: Diagram illustrating read_bounds
This is because the bounds are in the baseline (level 0)
reference frame. Therefore, varying the resolution does not
change what is visible within the output image.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
"""
# convert from requested to `baseline`
bounds_at_baseline = bounds
if coord_space == "resolution":
bounds_at_baseline = self.bounds_at_resolution_to_baseline(
bounds,
resolution,
units,
)
_, size_at_requested = utils.transforms.bounds2locsize(bounds)
# don't use the `output_size` (`size_at_requested`) here
# because the rounding error at `bounds_at_baseline` leads to
# different `size_at_requested` (keeping same read resolution
# but base image is of different scale)
(
read_level,
bounds_at_read_level,
_,
post_read_scale,
) = self.find_read_bounds_params(
bounds_at_baseline,
resolution=resolution,
units=units,
)
else: # duplicated portion with VirtualReader, factoring out ?
# Find parameters for optimal read
(
read_level,
bounds_at_read_level,
size_at_requested,
post_read_scale,
) = self.find_read_bounds_params(
bounds_at_baseline,
resolution=resolution,
units=units,
)
wsi = self.wsi
# Read at optimal level and corrected read size
location_at_baseline = bounds_at_baseline[:2]
level_location, size_at_read_level = utils.transforms.bounds2locsize(
bounds_at_read_level,
)
level_size = self.info.level_dimensions[read_level]
read_bounds = utils.image.find_overlap(
level_location,
size_at_read_level,
level_size,
)
_, read_size = utils.transforms.bounds2locsize(read_bounds)
dicom_level = wsi.levels[read_level].level
im_region = wsi.read_region(
location=location_at_baseline,
level=dicom_level,
size=read_size,
)
im_region = np.array(im_region)
# Apply padding outside the slide area
im_region = utils.image.crop_and_pad_edges(
bounds=bounds_at_read_level,
max_dimensions=self.info.level_dimensions[read_level],
region=im_region,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
# Resize to correct scale if required
if coord_space == "resolution":
im_region = utils.transforms.imresize(
img=im_region,
output_size=size_at_requested,
interpolation=interpolation,
)
else:
im_region = utils.transforms.imresize(
img=im_region,
scale_factor=post_read_scale,
output_size=size_at_requested,
interpolation=interpolation,
)
return utils.transforms.background_composite(image=im_region, alpha=False)
[docs]
class NGFFWSIReader(WSIReader):
"""Reader for NGFF WSI zarr(s).
Support is currently experimental. This supports reading from
NGFF version 0.4.
"""
def __init__(self: NGFFWSIReader, path: str | Path, **kwargs: dict) -> None:
"""Initialize :class:`NGFFWSIReader`."""
super().__init__(path, **kwargs)
from imagecodecs import numcodecs
from tiatoolbox.wsicore.metadata import ngff
numcodecs.register_codecs()
store = zarr.SQLiteStore(path) if is_sqlite3(path) else path
self._zarr_group: zarr.hierarchy.Group = zarr.open(store, mode="r")
attrs = self._zarr_group.attrs
multiscales = attrs["multiscales"][0]
axes = multiscales["axes"]
datasets = multiscales["datasets"]
omero = attrs["omero"]
self.zattrs = ngff.Zattrs(
_creator=ngff.Creator(
name=attrs.get("name"),
version=attrs.get("version"),
),
multiscales=ngff.Multiscales(
version=multiscales.get("version"),
axes=[ngff.Axis(**axis) for axis in axes],
datasets=[
ngff.Dataset(
path=dataset["path"],
coordinateTransformations=dataset.get(
"coordinateTransformations",
),
)
for dataset in datasets
],
),
omero=ngff.Omero(
name=omero.get("name"),
id=omero.get("id"),
channels=[ngff.Channel(**channel) for channel in omero["channels"]],
rdefs=ngff.RDefs(**omero["rdefs"]),
version=omero.get("version"),
),
_ARRAY_DIMENSIONS=attrs["_ARRAY_DIMENSIONS"],
)
self.level_arrays = {
int(key): ArrayView(array, axes=self.info.axes)
for key, array in self._zarr_group.arrays()
}
def _info(self: NGFFWSIReader) -> WSIMeta:
"""WSI metadata constructor.
Returns:
WSIMeta:
Containing metadata.
"""
multiscales = self.zattrs.multiscales
return WSIMeta(
axes="".join(axis.name.upper() for axis in multiscales.axes),
level_dimensions=[
array.shape[:2][::-1]
for _, array in sorted(self._zarr_group.arrays(), key=lambda x: x[0])
],
slide_dimensions=self._zarr_group[0].shape[:2][::-1],
vendor=self.zattrs._creator.name, # skipcq: PYL-W0212 # noqa: SLF001
raw=self._zarr_group.attrs,
mpp=self._get_mpp(),
)
def _get_mpp(self: NGFFWSIReader) -> tuple[float, float] | None:
"""Get the microns-per-pixel (MPP) of the slide.
Returns:
Tuple[float, float]:
The mpp of the slide an x,y tuple. None if not available.
"""
# Check that the required axes are present
multiscales = self.zattrs.multiscales
axes_dict = {a.name.lower(): a for a in multiscales.axes}
if "x" not in axes_dict or "y" not in axes_dict:
return None
x = axes_dict["x"]
y = axes_dict["y"]
# Check the units,
# Currently only handle micrometer units
if x.unit != y.unit != "micrometer":
logger.warning(
"Expected units of micrometer, got %s and %s",
x.unit,
y.unit,
)
return None
# Check that datasets is non-empty and has at least one coordinateTransformation
if (
not multiscales.datasets
or not multiscales.datasets[0].coordinateTransformations
):
return None
# Currently simply using the first scale transform
transforms = multiscales.datasets[0].coordinateTransformations
for t in transforms:
if "scale" in t and t.get("type") == "scale":
x_index = multiscales.axes.index(x)
y_index = multiscales.axes.index(y)
return (t["scale"][x_index], t["scale"][y_index])
return None
[docs]
def read_rect(
self: NGFFWSIReader,
location: IntPair,
size: IntPair,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict, # noqa: ARG002
) -> np.ndarray:
"""Read a region of the whole slide image at a location and size.
Location is in terms of the baseline image (level 0 / maximum
resolution), and size is the output image size.
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The field of view varies with resolution. For a fixed field of
view see :func:`read_bounds`.
Args:
location (IntPair):
(x, y) tuple giving the top left pixel in the baseline
(level 0) reference frame.
size (IntPair):
(width, height) tuple giving the desired output image
size.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
The units of resolution, default = "level". Supported
units are: microns per pixel (mpp), objective power
(power), pyramid / resolution level (level), pixels per
baseline pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by VirtualWSIReader. See class
docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=size[0], N=size[1]
Example:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load a WSI image
>>> wsi = WSIReader.open(input_img="./CMU-1.ome.zarr")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # Read a region at level 0 (baseline / full resolution)
>>> img = wsi.read_rect(location, size)
>>> # Read a region at 0.5 microns per pixel (mpp)
>>> img = wsi.read_rect(location, size, 0.5, "mpp")
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.5),
... units="mpp",
... )
Note: The field of view varies with resolution when using
:func:`read_rect`.
.. figure:: ../images/read_rect_tissue.png
:width: 512
:alt: Diagram illustrating read_rect
As the location is in the baseline reference frame but the size
(width and height) is the output image size, the field of view
therefore changes as resolution changes.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
.. figure:: ../images/read_rect-interpolated-reads.png
:width: 512
:alt: Diagram illustrating read_rect interpolting between levels
When reading between the levels stored in the WSI, the
coordinates of the requested region are projected to the next
highest resolution. This resolution is then decoded and
downsampled to produce the desired output. This is a major
source of variability in the time take to perform a read
operation. Reads which require reading a large region before
downsampling will be significantly slower than reading at a
fixed level.
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load a WSI image
>>> wsi = WSIReader.open(input_img="./CMU-1.ome.zarr")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # The resolution can be different in x and y, e.g.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.75),
... units="mpp",
... )
>>> # Several units can be used including: objective power,
>>> # microns per pixel, pyramid/resolution level, and
>>> # fraction of baseline.
>>> # E.g. Read a region at an objective power of 10x
>>> img = wsi.read_rect(
... location,
... size,
... resolution=10,
... units="power",
... )
>>> # Read a region at pyramid / resolution level 1
>>> img = wsi.read_rect(
... location,
... size,
... resolution=1,
... units="level",
... )
>>> # Read at a fractional level, this will linearly
>>> # interpolate the downsampling factor between levels.
>>> # E.g. if levels 0 and 1 have a downsampling of 1x and
>>> # 2x of baseline, then level 0.5 will correspond to a
>>> # downsampling factor 1.5x of baseline.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="level",
... )
>>> # Read a region at half of the full / baseline
>>> # resolution.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="baseline",
... )
>>> # Read at a higher resolution than the baseline
>>> # (interpolation applied to output)
>>> img = wsi.read_rect(
... location,
... size,
... resolution=1.25,
... units="baseline",
... )
>>> # Assuming the image has a native mpp of 0.5,
>>> # interpolation will be applied here.
>>> img = wsi.read_rect(
... location,
... size,
... resolution=0.25,
... units="mpp",
... )
"""
if coord_space == "resolution":
im_region = self.read_rect_at_resolution(
location,
size,
resolution=resolution,
units=units,
interpolation=interpolation,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
return utils.transforms.background_composite(image=im_region, alpha=False)
# Find parameters for optimal read
(
read_level,
_,
_,
post_read_scale,
baseline_read_size,
) = self.find_read_rect_params(
location=location,
size=size,
resolution=resolution,
units=units,
)
bounds = utils.transforms.locsize2bounds(
location=location,
size=baseline_read_size,
)
im_region = utils.image.safe_padded_read(
image=self.level_arrays[read_level],
bounds=bounds,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
im_region = utils.transforms.imresize(
img=im_region,
scale_factor=post_read_scale,
output_size=size,
interpolation=interpolation,
)
return utils.transforms.background_composite(image=im_region, alpha=False)
[docs]
def read_bounds(
self: NGFFWSIReader,
bounds: IntBounds,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | IntPair = 0,
coord_space: str = "baseline",
**kwargs: dict,
) -> np.ndarray:
"""Read a region of the whole slide image within given bounds.
Bounds are in terms of the baseline image (level 0 / maximum
resolution).
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The output image size may be different to the width and height
of the bounds as the resolution will affect this. To read a
region with a fixed output image size see :func:`read_rect`.
Args:
bounds (IntBounds):
By default, this is a tuple of (start_x, start_y, end_x,
end_y) i.e. (left, top, right, bottom) of the region in
baseline reference frame. However, with
`coord_space="resolution"`, the bound is expected to be
at the requested resolution system.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
Units of resolution, default="level". Supported units
are: microns per pixel (mpp), objective power (power),
pyramid / resolution level (level), pixels per baseline
pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, IntPair):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by :obj:`VirtualWSIReader`. See
class docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=end_h-start_h, N=end_w-start_w
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> from matplotlib import pyplot as plt
>>> wsi = WSIReader.open(input_img="./CMU-1.ome.zarr")
>>> # Read a region at level 0 (baseline / full resolution)
>>> bounds = [1000, 2000, 2000, 3000]
>>> img = wsi.read_bounds(bounds)
>>> plt.imshow(img)
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_bounds(
... bounds,
... resolution=0,
... units="level",
... )
>>> plt.imshow(img)
Note: The field of view remains the same as resolution is varied
when using :func:`read_bounds`.
.. figure:: ../images/read_bounds_tissue.png
:width: 512
:alt: Diagram illustrating read_bounds
This is because the bounds are in the baseline (level 0)
reference frame. Therefore, varying the resolution does not
change what is visible within the output image.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
"""
bounds_at_baseline = bounds
if coord_space == "resolution":
bounds_at_baseline = self.bounds_at_resolution_to_baseline(
bounds,
resolution,
units,
)
_, size_at_requested = utils.transforms.bounds2locsize(bounds)
# don't use the `output_size` (`size_at_requested`) here
# because the rounding error at `bounds_at_baseline` leads to
# different `size_at_requested` (keeping same read resolution
# but base image is of different scale)
(
read_level,
_,
_,
post_read_scale,
) = self.find_read_bounds_params(
bounds_at_baseline,
resolution=resolution,
units=units,
)
else: # duplicated portion with VirtualReader, factoring out ?
# Find parameters for optimal read
(
read_level,
_,
size_at_requested,
post_read_scale,
) = self.find_read_bounds_params(
bounds_at_baseline,
resolution=resolution,
units=units,
)
im_region = utils.image.sub_pixel_read(
image=self.level_arrays[read_level],
bounds=bounds_at_baseline,
output_size=size_at_requested,
interpolation=interpolation,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
read_kwargs=kwargs,
pad_at_baseline=False,
)
if coord_space == "resolution":
# do this to enforce output size is as defined by input bounds
im_region = utils.transforms.imresize(
img=im_region,
output_size=size_at_requested,
)
else:
im_region = utils.transforms.imresize(
img=im_region,
scale_factor=post_read_scale,
output_size=size_at_requested,
)
return im_region
[docs]
class AnnotationStoreReader(WSIReader):
"""Reader for Annotation stores.
This reader is used to read annotation store data as if it were a WSI,
rendering the annotations in the specified region to be read. Can be used
either to render annotations as a stand-alone mask, or to render annotations
on top of its parent WSI as a virtual 'annotated slide'.
Note: Currently only supports annotations stored at the same resolution as
the parent WSI base resolution. Support for annotations stored at arbitrary
resolutions will be added in the future.
Args:
store (AnnotationStore | str | Path):
An AnnotationStore or a path to an annotation store .db file.
info (WSIMeta):
Metadata of the base WSI for the annotations in the store.
If this is not provided, will attempt to read it read from
the store metadata, or the base_wsi if provided.
If no source of metadata is found, will raise an error.
renderer (AnnotationRenderer):
Renderer to use for rendering annotations. Providing a renderer
allows for customisation of the rendering process. If not provided,
a sensible default will be created.
base_wsi (WSIReader | str):
Base WSI reader or path to use for reading the base WSI. Annotations
will be rendered on top of the base WSI. If not provided,
will render annotation masks without a base image.
alpha (float):
Opacity of the overlaid annotations. Must be between 0 and 1.
Has no effect if base_wsi is not provided.
"""
def __init__(
self: AnnotationStoreReader,
store: AnnotationStore | str | Path,
info: WSIMeta | None = None,
renderer: AnnotationRenderer | None = None,
base_wsi: WSIReader | str | None = None,
alpha: float = 1.0,
**kwargs: dict,
) -> None:
"""Initialize :class:`AnnotationStoreReader`."""
super().__init__(store, **kwargs)
self.store = (
SQLiteStore(Path(store)) if isinstance(store, (str, Path)) else store
)
self.base_wsi = base_wsi
if isinstance(base_wsi, (str, Path)):
self.base_wsi = WSIReader.open(base_wsi)
if info is None:
# try to get metadata from store
try:
info = WSIMeta(**json.loads(self.store.metadata["wsi_meta"]))
except KeyError as exc:
if self.base_wsi is not None:
# get the metadata from the base reader.
# assumes annotations saved at WSI baseline res
info = self.base_wsi.info
else:
# we cant find any metadata
msg = (
"No metadata found in store. "
"Please provide either info or base slide."
)
raise ValueError(
msg,
) from exc
self.info = info
if renderer is None:
types = self.store.pquery("props['type']")
if len(types) == 0:
renderer = AnnotationRenderer(max_scale=1000)
else:
renderer = AnnotationRenderer("type", list(types), max_scale=1000)
renderer.edge_thickness = 0
self.renderer = renderer
if self.base_wsi is not None:
self.on_slide = True
self.alpha = alpha
def _info(self: AnnotationStoreReader) -> WSIMeta:
"""Get the metadata of the slide."""
return self.info
[docs]
def read_rect(
self: AnnotationStoreReader,
location: IntPair,
size: IntPair,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | tuple[int, int] = 0,
coord_space: str = "baseline",
**kwargs: dict,
) -> np.ndarray:
"""Read a region using start location and size (width, height).
Read a region of the annotation mask, or annotated whole slide
image at a location and size.
Location is in terms of the baseline image (level 0 / maximum
resolution), and size is the output image size.
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The field of view varies with resolution. For a fixed field of
view see :func:`read_bounds`.
Args:
location (IntPair):
(x, y) tuple giving the top left pixel in the baseline
(level 0) reference frame.
size (IntPair):
(width, height) tuple giving the desired output image
size.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
The units of resolution, default = "level". Supported
units are: microns per pixel (mpp), objective power
(power), pyramid / resolution level (level), pixels per
baseline pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by VirtualWSIReader. See class
docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=size[0], N=size[1]
Example:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load an annotation store and associated wsi to be
>>> # overlaid upon.
>>> annotated_wsi = WSIReader.open(input_img="./CMU-1.db",
>>> base_wsi="./CMU-1.ndpi")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # Read a region at level 0 (baseline / full resolution)
>>> img = annotated_wsi.read_rect(location, size)
>>> # Read a region at 0.5 microns per pixel (mpp)
>>> img = annotated_wsi.read_rect(location, size, 0.5, "mpp")
>>> # This could also be written more verbosely as follows
>>> img = annotated_wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.5),
... units="mpp",
... )
Note: The field of view varies with resolution when using
:func:`read_rect`.
.. figure:: ../images/read_rect_tissue.png
:width: 512
:alt: Diagram illustrating read_rect
As the location is in the baseline reference frame but the size
(width and height) is the output image size, the field of view
therefore changes as resolution changes.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
.. figure:: ../images/read_rect-interpolated-reads.png
:width: 512
:alt: Diagram illustrating read_rect interpolting between levels
When reading between the levels stored in the WSI, the
coordinates of the requested region are projected to the next
highest resolution. This resolution is then decoded and
downsampled to produce the desired output. This is a major
source of variability in the time take to perform a read
operation. Reads which require reading a large region before
downsampling will be significantly slower than reading at a
fixed level.
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # Load an annotation store and associated wsi to be
>>> # overlaid upon.
>>> annotated_wsi = WSIReader.open(input_img="./CMU-1.db",
>>> base_wsi="./CMU-1.ndpi")
>>> location = (0, 0)
>>> size = (256, 256)
>>> # The resolution can be different in x and y, e.g.
>>> img = annotated_wsi.read_rect(
... location,
... size,
... resolution=(0.5, 0.75),
... units="mpp",
... )
>>> # Several units can be used including: objective power,
>>> # microns per pixel, pyramid/resolution level, and
>>> # fraction of baseline.
>>> # E.g. Read a region at an objective power of 10x
>>> img = annotated_wsi.read_rect(
... location,
... size,
... resolution=10,
... units="power",
... )
>>> # Read a region at pyramid / resolution level 1
>>> img = annotated_wsi.read_rect(
... location,
... size,
... resolution=1,
... units="level",
... )
>>> # Read at a fractional level, this will linearly
>>> # interpolate the downsampling factor between levels.
>>> # E.g. if levels 0 and 1 have a downsampling of 1x and
>>> # 2x of baseline, then level 0.5 will correspond to a
>>> # downsampling factor 1.5x of baseline.
>>> img = annotated_wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="level",
... )
>>> # Read a region at half of the full / baseline
>>> # resolution.
>>> img = annotated_wsi.read_rect(
... location,
... size,
... resolution=0.5,
... units="baseline",
... )
>>> # Read at a higher resolution than the baseline
>>> # (interpolation applied to output)
>>> img = annotated_wsi.read_rect(
... location,
... size,
... resolution=1.25,
... units="baseline",
... )
>>> # Assuming the image has a native mpp of 0.5,
>>> # interpolation will be applied here.
>>> img = annotated_wsi.read_rect(
... location,
... size,
... resolution=0.25,
... units="mpp",
... )
Annotations can also be displayed as a stand-alone mask not
overlaid on the WSI. In this case, the metadata of the store
must contain the resolution at which the annotations were saved
at, and the slide dimensions at that resolution.
Alternatively, an instance of WSIMeta can be provided describing the
slide the annotations are associated with (in which case annotations
are assumed to be saved at the baseline resolution given in the metadata).
Example:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> # get metadata from the slide (could also manually create a
>>> # WSIMeta object if you know the slide info but do not have the
>>> # slide itself)
>>> metadata = WSIReader.open("CMU-1.ndpi").info
>>> # Load associated annotations
>>> annotation_mask = WSIReader.open(input_img="./CMU-1.db", info=wsi_meta)
>>> location = (0, 0)
>>> size = (256, 256)
>>> # Read a region of the mask at level 0 (baseline / full resolution)
>>> img = annotation_mask.read_rect(location, size)
>>> # Read a region of the mask at 0.5 microns per pixel (mpp)
>>> img = annotation_mask.read_rect(location, size, 0.5, "mpp")
"""
if coord_space == "resolution":
return self.read_rect_at_resolution(
location,
size,
resolution=resolution,
units=units,
interpolation=interpolation,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
)
# Find parameters for optimal read
(
read_level,
_,
_,
post_read_scale,
baseline_read_size,
) = self.find_read_rect_params(
location=location,
size=size,
resolution=resolution,
units=units,
)
bounds = utils.transforms.locsize2bounds(
location=location,
size=baseline_read_size,
)
im_region = self.renderer.render_annotations(
self.store,
bounds,
self.info.level_downsamples[read_level],
)
im_region = utils.transforms.imresize(
img=im_region,
scale_factor=post_read_scale,
output_size=size,
interpolation=interpolation,
)
if self.base_wsi is not None:
# overlay image region on the base wsi
base_region = self.base_wsi.read_rect(
location,
size,
resolution=resolution,
units=units,
interpolation=interpolation,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
coord_space=coord_space,
**kwargs,
)
base_region = Image.fromarray(
utils.transforms.background_composite(base_region, alpha=True),
)
im_region = Image.fromarray(im_region)
if self.alpha < 1.0:
im_region.putalpha(
im_region.getchannel("A").point(lambda i: i * self.alpha),
)
base_region = Image.alpha_composite(base_region, im_region)
base_region = base_region.convert("RGB")
return np.array(base_region)
return utils.transforms.background_composite(im_region, alpha=False)
[docs]
def read_bounds(
self: AnnotationStoreReader,
bounds: IntBounds,
resolution: Resolution = 0,
units: Units = "level",
interpolation: str = "optimise",
pad_mode: str = "constant",
pad_constant_values: int | tuple[int, int] = 0,
coord_space: str = "baseline",
**kwargs: dict,
) -> np.ndarray:
"""Read a region by defining boundary locations.
Read a region of the annotation mask, or annotated whole slide
image within given bounds.
Bounds are in terms of the baseline image (level 0 / maximum
resolution).
Reads can be performed at different resolutions by supplying a
pair of arguments for the resolution and the units of
resolution. If metadata does not specify `mpp` or
`objective_power` then `baseline` units should be selected with
resolution 1.0
The output image size may be different to the width and height
of the bounds as the resolution will affect this. To read a
region with a fixed output image size see :func:`read_rect`.
Args:
bounds (IntBounds):
By default, this is a tuple of (start_x, start_y, end_x,
end_y) i.e. (left, top, right, bottom) of the region in
baseline reference frame. However, with
`coord_space="resolution"`, the bound is expected to be
at the requested resolution system.
resolution (Resolution):
Resolution at which to read the image, default = 0.
Either a single number or a sequence of two numbers for
x and y are valid. This value is in terms of the
corresponding units. For example: resolution=0.5 and
units="mpp" will read the slide at 0.5 microns
per-pixel, and resolution=3, units="level" will read at
level at pyramid level / resolution layer 3.
units (Units):
Units of resolution, default="level". Supported units
are: microns per pixel (mpp), objective power (power),
pyramid / resolution level (level), pixels per baseline
pixel (baseline).
interpolation (str):
Method to use when resampling the output image. Possible
values are "linear", "cubic", "lanczos", "area", and
"optimise". Defaults to 'optimise' which will use cubic
interpolation for upscaling and area interpolation for
downscaling to avoid moiré patterns.
pad_mode (str):
Method to use when padding at the edges of the image.
Defaults to 'constant'. See :func:`numpy.pad` for
available modes.
pad_constant_values (int, tuple(int)):
Constant values to use when padding with constant pad mode.
Passed to the :func:`numpy.pad` `constant_values` argument.
Default is 0.
coord_space (str):
Defaults to "baseline". This is a flag to indicate if
the input `bounds` is in the baseline coordinate system
("baseline") or is in the requested resolution system
("resolution").
**kwargs (dict):
Extra key-word arguments for reader specific parameters.
Currently only used by :obj:`VirtualWSIReader`. See
class docstrings for more information.
Returns:
:class:`numpy.ndarray`:
Array of size MxNx3 M=end_h-start_h, N=end_w-start_w
Examples:
>>> from tiatoolbox.wsicore.wsireader import WSIReader
>>> from matplotlib import pyplot as plt
>>> annotated_wsi = WSIReader.open(input_img="./CMU-1.db",
>>> base_wsi="./CMU-1.ndpi")
>>> # Read a region at level 0 (baseline / full resolution)
>>> bounds = [1000, 2000, 2000, 3000]
>>> img = annotated_wsi.read_bounds(bounds)
>>> plt.imshow(img)
>>> # This could also be written more verbosely as follows
>>> img = wsi.read_bounds(
... bounds,
... resolution=0,
... units="level",
... )
>>> plt.imshow(img)
Note: The field of view remains the same as resolution is varied
when using :func:`read_bounds`.
.. figure:: ../images/read_bounds_tissue.png
:width: 512
:alt: Diagram illustrating read_bounds
This is because the bounds are in the baseline (level 0)
reference frame. Therefore, varying the resolution does not
change what is visible within the output image.
If the WSI does not have a resolution layer corresponding
exactly to the requested resolution (shown above in white with a
dashed outline), a larger resolution is downscaled to achieve
the correct requested output resolution.
If the requested resolution is higher than the baseline (maximum
resultion of the image), then bicubic interpolation is applied
to the output image.
"""
bounds_at_baseline = bounds
if coord_space == "resolution":
bounds_at_baseline = self.bounds_at_resolution_to_baseline(
bounds,
resolution,
units,
)
_, size_at_requested = utils.transforms.bounds2locsize(bounds)
# don't use the `output_size` (`size_at_requested`) here
# because the rounding error at `bounds_at_baseline` leads to
# different `size_at_requested` (keeping same read resolution
# but base image is of different scale)
(
read_level,
_,
_,
post_read_scale,
) = self.find_read_bounds_params(
bounds_at_baseline,
resolution=resolution,
units=units,
)
else: # duplicated portion with VirtualReader, factoring out ?
# Find parameters for optimal read
(
read_level,
_,
size_at_requested,
post_read_scale,
) = self.find_read_bounds_params(
bounds_at_baseline,
resolution=resolution,
units=units,
)
im_region = self.renderer.render_annotations(
self.store,
bounds_at_baseline,
self.info.level_downsamples[read_level],
)
if coord_space == "resolution":
# do this to enforce output size is as defined by input bounds
im_region = utils.transforms.imresize(
img=im_region,
output_size=size_at_requested,
)
else:
im_region = utils.transforms.imresize(
img=im_region,
scale_factor=post_read_scale,
output_size=size_at_requested,
)
if self.base_wsi is not None:
# overlay image region on the base wsi
base_region = self.base_wsi.read_bounds(
bounds,
resolution=resolution,
units=units,
interpolation=interpolation,
pad_mode=pad_mode,
pad_constant_values=pad_constant_values,
coord_space=coord_space,
**kwargs,
)
base_region = Image.fromarray(
utils.transforms.background_composite(base_region, alpha=True),
)
im_region = Image.fromarray(im_region)
if self.alpha < 1.0:
im_region.putalpha(
im_region.getchannel("A").point(lambda i: i * self.alpha),
)
base_region = Image.alpha_composite(base_region, im_region)
base_region = base_region.convert("RGB")
return np.array(base_region)
return utils.transforms.background_composite(im_region, alpha=False)